Estefani Gaytan Nunez

upload

Showing 97 changed files with 166 additions and 2 deletions
......@@ -86,6 +86,9 @@ if __name__ == '__main__':
scores[report[7:11]]['f1-score']=summaryScores[2]
print(DF(scores).T)
print('------------------------------- SAVING TABLE --------------------------------\n')
with open(os.path.join(options.inputPath, str(options.figureName) ), 'w') as File:
scoresTable = DF(scores).T
imageName=os.path.join(options.outputPath, options.figureName)
......
from optparse import OptionParser
import re
from collections import defaultdict as df
import os
import random
from pandas import DataFrame as DF
import matplotlib.pyplot as plt
# Objective
# Drawn figures of grid reports
#
# Input parameters
# --inputPath=PATH Path of inputfiles
# --outputPath=PATH Path to place output figures
# --figureName single run specific name figure, multifigure first part of name
# --inputFile Use it for a single report
# --version CRF-script version of reports
#
# Output
# training and test data set
#
# Examples
# python figures-reports.py
# --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/reports/
# --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/figures/
# --figureName FiguresGrid
# --inputFile report_Run1_v11.txt
# --version v11
# python figures-tag-report.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/reports/ --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/figures/ --figureName FiguresGrid_v11 --version v11
__author__ = 'egaytan'
####################################################################################
# FUNCTIONS #
####################################################################################
def Filter(rfile, options,v):
if options[0]=='all':
if rfile[0:6]=='report' and rfile[-7:-4]==v: return(True)
elif rfile in options:
return(True)
return(False)
####################################################################################
# MAIN PROGRAM #
####################################################################################
if __name__ == '__main__':
# Defining parameters
parser = OptionParser()
parser.add_option('--inputPath', dest='inputPath', help='Path of output from CoreNLP', metavar='PATH')
parser.add_option('--outputPath', dest='outputPath', help='Path to place output figures', metavar='PATH')
parser.add_option('--figureName', dest='figureName', help='Specific or first part of figurename', metavar='FILE')
parser.add_option('--version', dest='version', help='script version', metavar='FILE')
parser.add_option('--inputFile', dest='inputFile', help='Use it for a specific report files', metavar='FILE', default='all,')
(options, args) = parser.parse_args()
if len(args) > 0:
parser.error('Any parameter given.\nFor multi input files be sure to seprate the filenames by coma')
sys.exit(1)
print('-------------------------------- PARAMETERS --------------------------------')
print('Path of output from CoreNLP: ' + str(options.inputPath))
print('Path to place output figures: ' + str(options.outputPath))
print('Specific or first part of figurename: ' + str(options.figureName))
print('CRF-script version: ' + str(options.version))
print('-------------------------------- PROCESSING --------------------------------')
rawInputRepotsList = str(options.inputFile).split(',')
reportFileList = [ rfile for rfile in os.listdir(options.inputPath) if Filter(rfile, rawInputRepotsList, str(options.version)) ]
scores = df(dict)
#CV={}
print('Report files: ' + str(options.inputFile ))
print('\n'.join(reportFileList))
print('----------------------------------- NOTE -----------------------------------')
print('\n-------- All chosen report files should be in inputPath given---------------\n')
print('------------------------------- SAVING DATA --------------------------------\n')
OD, pH, Technique, Med, Temp, Vess, Agit, Phase, Air, Anti, Strain, Gtype, Substrain, Supp, Gversion = [], [], [], [], [], [], [], [], [], [], [], [], [], [], []
precision = df(list)
recall = df(list)
fscore = df(list)
support = df(list)
for report in reportFileList:
tags = {}
with open(os.path.join(options.inputPath, report), 'r') as File:
string = File.read()
tags['OD']= re.findall('OD\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['pH']= re.findall('pH\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Technique']= re.findall('Technique\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Med']= re.findall('Med\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Temp']= re.findall('Temp\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Vess']= re.findall('Vess\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Agit']= re.findall('Agit\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Phase']= re.findall('Phase\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Air']= re.findall('Air\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Anti']= re.findall('Anti\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Strain']= re.findall('Strain\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Gtype']= re.findall('Gtype\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Substrain']= re.findall('Substrain\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Supp']= re.findall('Supp\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
tags['Gversion']= re.findall('Gversion\s+(\d+.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)', string)[0]
for k in tags.keys():
precision[k].append(float(tags[k][0]))
recall[k].append(float(tags[k][1]))
fscore[k].append(float(tags[k][2]))
#support[k].append(tags[k][3])
print(DF(precision))
print(precision)
#lines = ['-', '--', '-.', ':', '.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_']
lines = ['-','--','-.',':','o','v','^','<','>','s','p','*','H','+','x','D','|']
imageName = str(options.figureName) + '_' + str(options.version)
fig = plt.figure()
plt.rcParams.update({'font.size': 15})
#fig.set_figheight(13)
#fig.set_figwidth(20)
plt.xlabel("Runs")
plt.ylabel("score")
plt.ylim(-0.2, 1.2)
lines=['-', '--', '-.', ':', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_']
for i,k in enumerate(tags.keys()):
plt.grid(False)
plt.plot(precision[k], lines[i], label=k, linewidth=8)
plt.legend(loc='lower right')
plt.tight_layout()
plt.xticks(range(8),['run1', 'run2', 'run3', 'run4', 'run5', 'run6', 'run7', 'run8'])
fig.savefig(imageName, bbox_inches='tight', pad_inches = 0.5)
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_1 --version _v12 > ../outputs/Run_1.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_2 --version _v12 --S1 > ../outputs/Run_2.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_3 --version _v12 --S2 > ../outputs/Run_3.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_4 --version _v12 --S1 --S2 > ../outputs/Run_4.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_5 --version _v12 --S3 > ../outputs/Run_5.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_6 --version _v12 --S1 --S3 > ../outputs/Run_6.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_7 --version _v12 --S2 --S3 > ../outputs/Run_7.txt
python3 training_validation_v12.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_8 --version _v12 --S1 --S2 --S3 > ../outputs/Run_8.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_1 --version _v13 > ../outputs/Run_1.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_2 --version _v13 --S1 > ../outputs/Run_2.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_3 --version _v13 --S2 > ../outputs/Run_3.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_4 --version _v13 --S1 --S2 > ../outputs/Run_4.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_5 --version _v13 --S3 > ../outputs/Run_5.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_6 --version _v13 --S1 --S3 > ../outputs/Run_6.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_7 --version _v13 --S2 --S3 > ../outputs/Run_7.txt
python3 training_validation_v13.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --Gridname Run_8 --version _v13 --S1 --S2 --S3 > ../outputs/Run_8.txt
......@@ -423,7 +423,8 @@ if __name__ == "__main__":
# Saving model
print(" Saving training model...")
t1 = time()
nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + str(options.version) + '.mod'
#nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + str(options.version) + '_S3_' + str(options.S3) + '.mod'
nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + '_S3_' + str(options.S3) + '_' + str(options.Gridname) + str(options.version) + '.mod'
joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel))
print(" Saving training model done in: %fs" % (time() - t1))
......
......@@ -423,7 +423,9 @@ if __name__ == "__main__":
# Saving model
print(" Saving training model...")
t1 = time()
nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + str(options.version) + '_S3_' + str(options.S3) + '.mod'
#nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + str(options.version) + '_S3_' + str(options.S3) + '.mod'
nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + '_S3_' + str(options.S3) + '_' + str(options.Gridname) + str(options.version) + '.mod'
joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel))
print(" Saving training model done in: %fs" % (time() - t1))
......
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
mv model_S1_False_S2_False_v11_S3_False.mod model_S1_False_S2_False_S3_False_Run_1_v11.mod
mv model_S1_True_S2_False_v11_S3_False.mod model_S1_True_S2_False_S3_False_Run_2_v11.mod
mv model_S1_False_S2_True_v11_S3_False.mod model_S1_False_S2_True_S3_False_Run_3_v11.mod
mv model_S1_True_S2_True_v11_S3_False.mod model_S1_True_S2_True_S3_False_Run_4_v11.mod
mv model_S1_False_S2_False_v11_S3_True.mod model_S1_False_S2_False_S3_True_Run_5_v11.mod
mv model_S1_True_S2_False_v11_S3_True.mod model_S1_True_S2_False_S3_True_Run_6_v11.mod
mv model_S1_False_S2_True_v11_S3_True.mod model_S1_False_S2_True_S3_True_Run_7_v11.mod
mv model_S1_True_S2_True_v11_S3_True.mod model_S1_True_S2_True_S3_True_Run_8_v11.mod
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.
This diff is collapsed. Click to expand it.