Run4_v11.txt 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v11
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003649s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
             0         1
0        lemma         2
1       postag        CD
2     -1:lemma  fructose
3    -1:postag        NN
4       hUpper     False
5       hLower     False
6       hGreek     False
7         symb     False
8    lemma[:1]         2
9   postag[:1]         C
10  postag[:2]        CD
11        word         2
12     isUpper     False
13     isLower     False
14     isGreek     False
15    isNumber      True
16     -1:word  fructose
--------------------------- FeaturesTest -----------------------------
             0           1
0        lemma  delta-arca
1       postag          NN
2     -1:lemma           _
3    -1:postag          NN
4     +1:lemma           _
5    +1:postag          CD
6       hUpper        True
7       hLower        True
8       hGreek       False
9         symb        True
10   lemma[:1]           d
11  postag[:1]           N
12   lemma[:2]          de
13  postag[:2]          NN
14        word  delta-arcA
15     isUpper       False
16     isLower       False
17     isGreek       False
18    isNumber       False
19     -1:word           _
20     +1:word           _
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.789624 -   1.3s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.813743 -   1.7s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.949229 -   1.6s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.843361 -   1.9s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.820019 -   1.6s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.921016 -   1.6s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.892120 -   1.7s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.969625 -   1.9s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.896961 -   1.9s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.824874 -   1.5s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.851303 -   1.9s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.799176 -   1.7s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.923027 -   1.6s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.912280 -   1.6s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.834170 -   1.6s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.923027 -   1.5s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.921016 -   1.6s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.909289 -   1.5s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.718722 -   1.6s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.814665 -   1.3s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.823347 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.827976 -   1.8s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.826784 -   2.0s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.734353 -   1.7s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.730238 -   1.5s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.923027 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.794216 -   1.9s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.900463 -   1.9s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.847287 -   1.7s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.719240 -   1.7s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.924709 -   1.6s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.892120 -   1.5s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.741087 -   1.9s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.865380 -   1.5s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.867165 -   1.7s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.844380 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.865097 -   1.9s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.851303 -   1.8s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.843486 -   1.8s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.747025 -   1.7s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.820019 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.914885 -   1.8s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.899524 -   1.9s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.923027 -   1.7s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.914885 -   1.6s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.936198 -   1.7s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.820852 -   1.8s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.923229 -   1.8s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.916002 -   1.8s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.843908 -   1.7s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.719240 -   1.7s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.783387 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.718722 -   1.7s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.816050 -   1.5s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.830456 -   1.7s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.923229 -   1.8s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.797998 -   1.6s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.956017 -   2.0s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.817424 -   1.6s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.941585 -   1.8s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.733882 -   1.6s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.841027 -   1.8s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.823347 -   1.7s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.869064 -   1.9s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.799746 -   1.6s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.912280 -   1.5s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.740042 -   1.8s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.862696 -   1.8s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.946646 -   1.7s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.855838 -   1.6s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.827913 -   1.7s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.922774 -   1.7s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.917968 -   1.8s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.892120 -   1.6s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.913219 -   1.9s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.799176 -   1.8s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.933588 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.866290 -   1.6s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.723924 -   1.6s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.820752 -   1.6s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.816050 -   1.7s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.883328 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.922774 -   1.7s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.843908 -   1.4s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.920107 -   1.7s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.912280 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.920107 -   1.7s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.839590 -   1.8s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.936885 -   1.8s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.830598 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.867165 -   1.6s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.837807 -   1.6s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.938245 -   1.6s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.922774 -   1.4s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.926210 -   1.3s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.731210 -   1.6s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.824947 -   2.0s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.801005 -   1.9s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.949482 -   1.4s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.929494 -   1.7s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.851303 -   1.6s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.946646 -   1.8s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.851303 -   1.9s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.926364 -   1.6s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.801762 -   1.7s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.827108 -   1.8s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.784408 -   1.6s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.923229 -   1.8s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.690220 -   1.6s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.936149 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.818102 -   1.7s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.925096 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.816050 -   1.6s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.807845 -   1.4s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.922774 -   1.7s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.866290 -   1.7s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.718722 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.799176 -   1.7s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.765595 -   1.4s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.816050 -   1.7s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.921016 -   1.6s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.922774 -   1.5s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.792619 -   1.8s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.799176 -   1.6s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.880765 -   1.6s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.946646 -   1.8s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.902567 -   1.8s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.820752 -   1.5s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.870314 -   1.5s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.799176 -   1.9s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.839427 -   1.8s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.818335 -   1.7s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.794216 -   1.5s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.943466 -   1.4s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.683743 -   1.8s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.936198 -   2.0s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.816050 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.880765 -   1.6s
[CV] c1=0.8168034772987887, c2=0.06477230233366042 ...................
[CV]  c1=0.8168034772987887, c2=0.06477230233366042, score=0.901751 -   1.6s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.794216 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.922774 -   1.6s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.769157 -   1.7s
[CV] c1=0.5404386702330402, c2=0.00940384945509182 ...................
[CV]  c1=0.5404386702330402, c2=0.00940384945509182, score=0.925096 -   1.7s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.728530 -   1.5s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.887115 -   1.8s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.803184 -   1.8s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.799176 -   1.9s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.841965 -   1.9s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.922774 -   1.3s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.922774 -   1.6s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.714606 -   1.7s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.900463 -   1.7s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.922774 -   1.6s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.799176 -   1.4s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.950725 -   1.8s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.916139 -   1.7s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.923229 -   1.8s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.820852 -   1.7s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.928279 -   1.3s
[CV] c1=0.2530415538363529, c2=0.01421999529254304 ...................
[CV]  c1=0.2530415538363529, c2=0.01421999529254304, score=0.923027 -   1.2s
[CV] c1=0.0706583501364852, c2=0.007766154606045574 ..................
[CV]  c1=0.0706583501364852, c2=0.007766154606045574, score=0.909646 -   1.8s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.742060 -   1.7s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.733882 -   1.6s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.921016 -   1.7s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.856402 -   1.3s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.884935 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.946646 -   1.9s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.924267 -   1.6s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.865380 -   1.8s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.824874 -   1.4s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.719240 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.794216 -   1.9s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.837271 -   1.8s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.946646 -   1.9s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.932069 -   1.2s
[CV] c1=0.35697431252186523, c2=0.053072104891904226 .................
[CV]  c1=0.35697431252186523, c2=0.053072104891904226, score=0.816050 -   1.7s
[CV] c1=0.3270597884667632, c2=0.010347987464658356 ..................
[CV]  c1=0.3270597884667632, c2=0.010347987464658356, score=0.830113 -   1.8s
[CV] c1=0.04937325798482469, c2=0.021347060592283952 .................
[CV]  c1=0.04937325798482469, c2=0.021347060592283952, score=0.851303 -   1.7s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.920107 -   1.8s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.816050 -   1.2s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.807845 -   1.6s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.923027 -   1.4s
[CV] c1=0.2323716379870112, c2=0.06329296060320068 ...................
[CV]  c1=0.2323716379870112, c2=0.06329296060320068, score=0.946103 -   1.8s
[CV] c1=0.08296411755539199, c2=0.02012113673798377 ..................
[CV]  c1=0.08296411755539199, c2=0.02012113673798377, score=0.924267 -   1.5s
[CV] c1=0.07448098504603347, c2=9.667953584900881e-05 ................
[CV]  c1=0.07448098504603347, c2=9.667953584900881e-05, score=0.837553 -   1.7s
[CV] c1=0.8497482346216051, c2=0.13810348554922147 ...................
[CV]  c1=0.8497482346216051, c2=0.13810348554922147, score=0.804464 -   1.6s
[CV] c1=0.08116859297589825, c2=0.01402217610152598 ..................
[CV]  c1=0.08116859297589825, c2=0.01402217610152598, score=0.909646 -   1.8s
[CV] c1=0.4047465682558066, c2=0.024420878445861913 ..................
[CV]  c1=0.4047465682558066, c2=0.024420878445861913, score=0.865380 -   1.6s
[CV] c1=0.14106027770288562, c2=0.02011348479945861 ..................
[CV]  c1=0.14106027770288562, c2=0.02011348479945861, score=0.805596 -   1.8s
[CV] c1=0.4447485859982712, c2=0.0016484083449467537 .................
[CV]  c1=0.4447485859982712, c2=0.0016484083449467537, score=0.794216 -   1.8s
[CV] c1=0.5383828181005542, c2=0.03841071924486563 ...................
[CV]  c1=0.5383828181005542, c2=0.03841071924486563, score=0.946646 -   1.7s
[CV] c1=0.45932518333010963, c2=0.05807947207491818 ..................
[CV]  c1=0.45932518333010963, c2=0.05807947207491818, score=0.884120 -   1.7s
[CV] c1=0.6223773708649032, c2=0.007605247773857023 ..................
[CV]  c1=0.6223773708649032, c2=0.007605247773857023, score=0.880765 -   1.9s
[CV] c1=0.3444576411414005, c2=0.0178963036693645 ....................
[CV]  c1=0.3444576411414005, c2=0.0178963036693645, score=0.734741 -   1.6s
[CV] c1=0.649548584923434, c2=0.09611048012847326 ....................
[CV]  c1=0.649548584923434, c2=0.09611048012847326, score=0.774513 -   1.2s
Training done in: 11.158256s
     Saving training model...
        Saving training model done in: 0.014234s
*********************************
Prediction done in: 0.048239s