Run8_v11.txt 28.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v11
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003623s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
             0         1
0        lemma         2
1       postag        CD
2     -1:lemma  fructose
3    -1:postag        NN
4       hUpper     False
5       hLower     False
6       hGreek     False
7         symb     False
8    lemma[:1]         2
9   postag[:1]         C
10  postag[:2]        CD
11        word         2
12     isUpper     False
13     isLower     False
14     isGreek     False
15    isNumber      True
16     -1:word  fructose
17    -2:lemma       Cra
18   -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
             0           1
0        lemma  delta-arca
1       postag          NN
2     -1:lemma           _
3    -1:postag          NN
4     +1:lemma           _
5    +1:postag          CD
6       hUpper        True
7       hLower        True
8       hGreek       False
9         symb        True
10   lemma[:1]           d
11  postag[:1]           N
12   lemma[:2]          de
13  postag[:2]          NN
14        word  delta-arcA
15     isUpper       False
16     isLower       False
17     isGreek       False
18    isNumber       False
19     -1:word           _
20     +1:word           _
21    -2:lemma     affyexp
22   -2:postag          JJ
23    +2:lemma     glucose
24   +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.886214 -   1.6s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.877424 -   1.7s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.917614 -   1.9s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.901459 -   1.8s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.917472 -   1.7s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.886214 -   1.7s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.927028 -   2.0s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.897464 -   1.8s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.807866 -   2.0s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.872077 -   1.9s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.864462 -   1.7s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.927296 -   1.7s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.617405 -   1.9s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.777170 -   1.3s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.819428 -   1.9s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.826964 -   1.7s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.857436 -   1.7s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.759234 -   1.7s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.789940 -   1.6s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.827435 -   1.8s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.947560 -   1.9s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.799499 -   1.7s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.798512 -   1.8s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.897464 -   1.9s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.923585 -   1.8s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.813534 -   1.9s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.818750 -   2.0s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.877672 -   1.9s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.917821 -   1.8s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.836208 -   1.5s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.927296 -   1.6s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.815328 -   1.8s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.744355 -   1.9s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.818450 -   2.0s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.727471 -   2.1s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.871337 -   1.6s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.879397 -   2.3s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.814374 -   1.9s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.876526 -   1.9s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.920469 -   2.0s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.710634 -   1.9s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.867297 -   1.8s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.859655 -   2.0s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.792588 -   2.0s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.694284 -   1.9s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.696553 -   1.8s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.815781 -   2.0s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.609476 -   2.2s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.727632 -   2.2s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.927296 -   1.9s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.869321 -   1.8s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.836437 -   1.9s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.741826 -   2.1s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.767841 -   1.9s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.888272 -   1.8s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.927296 -   1.7s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.855584 -   1.8s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.767841 -   1.8s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.927296 -   1.6s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.863961 -   2.1s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.832514 -   1.6s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.702779 -   2.0s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.777170 -   1.8s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.852142 -   2.2s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.950725 -   2.0s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.876720 -   1.7s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.950725 -   2.0s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.925424 -   1.9s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.827435 -   2.1s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.857576 -   1.9s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.847957 -   2.0s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.854858 -   1.8s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.932900 -   2.1s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.916688 -   1.9s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.834436 -   1.9s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.920469 -   1.9s
[CV] c1=1.3925811330953486, c2=0.01587323954257908 ...................
[CV]  c1=1.3925811330953486, c2=0.01587323954257908, score=0.792588 -   2.0s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.945654 -   2.4s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.950946 -   1.9s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.854858 -   1.8s
[CV] c1=0.34832253122622947, c2=0.0024260335577202747 ................
[CV]  c1=0.34832253122622947, c2=0.0024260335577202747, score=0.932775 -   2.0s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.803472 -   2.0s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.917614 -   2.2s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.848596 -   1.8s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.874253 -   1.8s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.854858 -   2.0s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.846250 -   1.7s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.929519 -   1.9s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.939823 -   1.7s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.873425 -   1.8s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.849027 -   1.8s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.917821 -   1.8s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.841763 -   1.8s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.864462 -   1.8s
[CV] c1=0.005630188558136274, c2=0.0901354093196231 ..................
[CV]  c1=0.005630188558136274, c2=0.0901354093196231, score=0.937535 -   2.0s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.933952 -   2.0s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.916688 -   1.7s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.892703 -   2.1s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.893806 -   1.9s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.917821 -   1.7s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.945871 -   2.0s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.694284 -   2.0s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.818750 -   2.0s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.917821 -   1.7s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.844415 -   1.9s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.886214 -   1.7s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.833470 -   1.8s
[CV] c1=1.448745475188601, c2=0.026142389740376516 ...................
[CV]  c1=1.448745475188601, c2=0.026142389740376516, score=0.609476 -   2.1s
[CV] c1=0.068283530973784, c2=0.035968750782347465 ...................
[CV]  c1=0.068283530973784, c2=0.035968750782347465, score=0.832180 -   1.8s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.923585 -   1.8s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.801130 -   2.0s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.786527 -   1.7s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.950725 -   1.8s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.798342 -   1.7s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.869357 -   1.9s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.932739 -   1.9s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.809571 -   2.0s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.777170 -   1.8s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.824101 -   1.6s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.931991 -   1.8s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.876720 -   1.7s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.888955 -   1.8s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.871106 -   1.9s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.950725 -   1.8s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.871039 -   1.9s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.834436 -   1.9s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.912553 -   2.2s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.798097 -   2.2s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.892309 -   1.7s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.908709 -   2.0s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.694284 -   1.7s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.824101 -   1.8s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.877726 -   1.7s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.702779 -   1.8s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.816898 -   1.8s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.855584 -   1.9s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.818750 -   2.0s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.897464 -   1.8s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.875354 -   1.5s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.818750 -   1.9s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.908266 -   1.9s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.798342 -   2.1s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.824101 -   2.0s
[CV] c1=0.46546093853678977, c2=0.10881019404335167 ..................
[CV]  c1=0.46546093853678977, c2=0.10881019404335167, score=0.933350 -   1.7s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.946646 -   1.8s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.932900 -   2.1s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.632413 -   1.9s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.609476 -   2.0s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.927296 -   1.4s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.708949 -   2.0s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.844415 -   2.0s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.862659 -   2.0s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.912553 -   2.1s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.864462 -   1.3s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.916643 -   1.8s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.950946 -   1.9s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.936486 -   2.0s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.759234 -   1.8s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.909996 -   1.4s
[CV] c1=0.6426016214333032, c2=0.013291072696330009 ..................
[CV]  c1=0.6426016214333032, c2=0.013291072696330009, score=0.843153 -   1.6s
[CV] c1=0.037354859851607435, c2=0.07305354899253944 .................
[CV]  c1=0.037354859851607435, c2=0.07305354899253944, score=0.694284 -   1.8s
[CV] c1=1.6782438716438826, c2=0.005852028918477585 ..................
[CV]  c1=1.6782438716438826, c2=0.005852028918477585, score=0.750445 -   1.6s
[CV] c1=0.23763693406252395, c2=0.15562360351028884 ..................
[CV]  c1=0.23763693406252395, c2=0.15562360351028884, score=0.701018 -   1.9s
[CV] c1=0.3528158466716618, c2=0.02622785537868205 ...................
[CV]  c1=0.3528158466716618, c2=0.02622785537868205, score=0.813790 -   1.8s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.939823 -   1.3s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.921722 -   1.9s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.945871 -   1.8s
[CV] c1=0.7425928083768661, c2=0.07211893896234671 ...................
[CV]  c1=0.7425928083768661, c2=0.07211893896234671, score=0.815896 -   1.9s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.798512 -   1.8s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.888272 -   1.5s
[CV] c1=0.019077332979171517, c2=0.03842571004062146 .................
[CV]  c1=0.019077332979171517, c2=0.03842571004062146, score=0.945871 -   1.8s
[CV] c1=0.9295470777582396, c2=0.06136448305133849 ...................
[CV]  c1=0.9295470777582396, c2=0.06136448305133849, score=0.744355 -   2.1s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.950725 -   2.0s
[CV] c1=1.5389567508867608, c2=0.0341172934690459 ....................
[CV]  c1=1.5389567508867608, c2=0.0341172934690459, score=0.745317 -   2.1s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.832180 -   1.5s
[CV] c1=0.23410168766018233, c2=0.007576332674008764 .................
[CV]  c1=0.23410168766018233, c2=0.007576332674008764, score=0.872077 -   1.9s
[CV] c1=0.05139054695837179, c2=0.0988983229417386 ...................
[CV]  c1=0.05139054695837179, c2=0.0988983229417386, score=0.927296 -   1.6s
[CV] c1=0.42695722657704505, c2=0.061285485086823 ....................
[CV]  c1=0.42695722657704505, c2=0.061285485086823, score=0.923585 -   1.9s
[CV] c1=0.6285063975967342, c2=0.00047708053019435885 ................
[CV]  c1=0.6285063975967342, c2=0.00047708053019435885, score=0.923585 -   2.0s
[CV] c1=0.04223966754804299, c2=0.014836666503726496 .................
[CV]  c1=0.04223966754804299, c2=0.014836666503726496, score=0.870571 -   1.7s
Training done in: 12.658946s
     Saving training model...
        Saving training model done in: 0.013450s
*********************************
Prediction done in: 0.050529s