Run_4.txt 28 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v13
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003628s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0         1
0       lemma         2
1      postag        CD
2    -1:lemma  fructose
3   -1:postag        NN
4      hUpper     False
5      hLower     False
6      hGreek     False
7        symb     False
8   lemma[:1]         2
9        word         2
10    isUpper     False
11    isLower     False
12    isGreek     False
13   isNumber      True
14    -1:word  fructose
--------------------------- FeaturesTest -----------------------------
            0           1
0       lemma  delta-arca
1      postag          NN
2    -1:lemma           _
3   -1:postag          NN
4    +1:lemma           _
5   +1:postag          CD
6      hUpper        True
7      hLower        True
8      hGreek       False
9        symb        True
10  lemma[:1]           d
11  lemma[:2]          de
12       word  delta-arcA
13    isUpper       False
14    isLower       False
15    isGreek       False
16   isNumber       False
17    -1:word           _
18    +1:word           _
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.946646 -   1.6s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.864170 -   1.6s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.807845 -   1.7s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.929494 -   1.6s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.803340 -   1.4s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.840339 -   1.6s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.923027 -   1.5s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.798710 -   1.6s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.926918 -   1.5s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.837807 -   1.2s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.714781 -   1.6s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.820752 -   1.5s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.743438 -   1.5s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.830582 -   1.6s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.884496 -   1.4s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.929494 -   1.5s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.908120 -   1.5s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.913219 -   1.5s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.742060 -   1.6s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.904631 -   1.4s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.852640 -   1.5s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.830314 -   1.5s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.643754 -   1.6s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.815575 -   1.6s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.760326 -   1.4s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.913219 -   1.5s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.742060 -   1.7s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.817039 -   1.7s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.837271 -   1.6s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.932576 -   1.6s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.830873 -   1.4s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.820852 -   1.6s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.844732 -   1.6s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.924267 -   1.5s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.839590 -   1.5s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.830314 -   1.5s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.817039 -   1.5s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.798710 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.923027 -   1.3s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.769157 -   1.6s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.645578 -   1.4s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.870314 -   1.5s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.913219 -   1.5s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.820752 -   1.5s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.837807 -   1.3s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.807845 -   1.6s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.914885 -   1.7s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.734123 -   1.5s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.956017 -   1.6s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.826784 -   1.3s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.896825 -   1.5s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.731320 -   1.4s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.857484 -   1.7s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.851303 -   1.6s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.839590 -   1.3s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.794652 -   1.7s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.950725 -   1.7s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.772475 -   1.6s
[CV] c1=0.1252600216535052, c2=0.03782809818801547 ...................
[CV]  c1=0.1252600216535052, c2=0.03782809818801547, score=0.923229 -   1.6s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.865652 -   1.4s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.794216 -   1.6s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.913219 -   1.4s
[CV] c1=1.1633545759416617, c2=4.814017520065372e-05 .................
[CV]  c1=1.1633545759416617, c2=4.814017520065372e-05, score=0.929494 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.807863 -   1.6s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.912280 -   1.5s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.784595 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.787673 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.799746 -   1.5s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.908120 -   1.4s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.855428 -   1.6s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.820852 -   1.6s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.914210 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.755608 -   1.7s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.814665 -   1.3s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.763659 -   1.5s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.769157 -   1.6s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.798710 -   1.6s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.587894 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.789624 -   1.6s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.923027 -   1.5s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.823347 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.884120 -   1.5s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.946646 -   1.6s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.832065 -   1.1s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.930758 -   1.6s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.524048 -   1.6s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.848615 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.922774 -   1.5s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.830456 -   1.4s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.839590 -   1.6s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.876468 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.799746 -   1.7s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.843908 -   1.5s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.922774 -   1.3s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.818335 -   1.7s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.805797 -   1.6s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.714781 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.929292 -   1.5s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.920107 -   1.3s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.848615 -   1.7s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.851303 -   1.5s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.867361 -   1.6s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.844732 -   1.3s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.833705 -   1.3s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.923229 -   1.4s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.814642 -   1.7s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.663126 -   1.5s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.712432 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.731210 -   1.6s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.923229 -   1.6s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.857414 -   1.6s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.719025 -   1.4s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.880765 -   1.5s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.904043 -   1.3s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.845585 -   1.3s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.867361 -   1.7s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.723924 -   1.8s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.848984 -   1.8s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.855571 -   1.4s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.926918 -   1.5s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.950725 -   1.6s
[CV] c1=1.0317333456990663, c2=0.008270998659918627 ..................
[CV]  c1=1.0317333456990663, c2=0.008270998659918627, score=0.816050 -   1.6s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.772475 -   1.8s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.734741 -   1.5s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.851303 -   1.6s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.761785 -   1.6s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.820852 -   1.7s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.913219 -   1.4s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.829435 -   1.2s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.820752 -   1.5s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.797878 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.799176 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.735326 -   1.6s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.802530 -   1.5s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.926918 -   1.5s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.706226 -   1.6s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.769157 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.799176 -   1.6s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.789624 -   1.5s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.794216 -   1.6s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.926918 -   1.5s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.637277 -   1.6s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.656649 -   1.6s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.794216 -   1.3s
[CV] c1=6.554750484992917e-05, c2=0.05088901762281653 ................
[CV]  c1=6.554750484992917e-05, c2=0.05088901762281653, score=0.867442 -   1.7s
[CV] c1=0.2482723614159239, c2=0.0959138388411172 ....................
[CV]  c1=0.2482723614159239, c2=0.0959138388411172, score=0.921016 -   1.7s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.950725 -   1.7s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.734123 -   1.5s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.742060 -   1.3s
[CV] c1=0.10224977118326696, c2=0.08574073868552615 ..................
[CV]  c1=0.10224977118326696, c2=0.08574073868552615, score=0.922774 -   1.3s
[CV] c1=1.1334212532044017, c2=0.007010862010272158 ..................
[CV]  c1=1.1334212532044017, c2=0.007010862010272158, score=0.643754 -   1.7s
[CV] c1=0.24448285707107864, c2=0.07828996063095572 ..................
[CV]  c1=0.24448285707107864, c2=0.07828996063095572, score=0.806504 -   2.0s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.817039 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.860742 -   1.6s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.820676 -   1.7s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.852396 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.923027 -   1.4s
[CV] c1=1.3271060079387977, c2=0.016327328938926227 ..................
[CV]  c1=1.3271060079387977, c2=0.016327328938926227, score=0.924280 -   1.6s
[CV] c1=0.28189060423376666, c2=0.03192405059605604 ..................
[CV]  c1=0.28189060423376666, c2=0.03192405059605604, score=0.923528 -   1.4s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.807863 -   1.6s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.742060 -   1.6s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.798710 -   1.5s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.798710 -   1.6s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.923027 -   1.3s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.734741 -   1.7s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.924267 -   1.5s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.817039 -   1.6s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.890895 -   1.6s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.842269 -   1.2s
[CV] c1=0.07240461944941606, c2=0.016662416283521466 .................
[CV]  c1=0.07240461944941606, c2=0.016662416283521466, score=0.936198 -   1.7s
[CV] c1=1.9180357321696457, c2=0.042428547481606495 ..................
[CV]  c1=1.9180357321696457, c2=0.042428547481606495, score=0.886457 -   1.5s
[CV] c1=0.35893080441515235, c2=0.06547892139571729 ..................
[CV]  c1=0.35893080441515235, c2=0.06547892139571729, score=0.929292 -   1.6s
[CV] c1=0.5319496072976292, c2=0.07723824010154955 ...................
[CV]  c1=0.5319496072976292, c2=0.07723824010154955, score=0.816050 -   1.6s
[CV] c1=0.26433572200108835, c2=0.022956147621051873 .................
[CV]  c1=0.26433572200108835, c2=0.022956147621051873, score=0.914885 -   1.4s
[CV] c1=0.31977486593330257, c2=0.02388226330543089 ..................
[CV]  c1=0.31977486593330257, c2=0.02388226330543089, score=0.920107 -   1.5s
[CV] c1=0.07274256234028868, c2=0.03280670164668215 ..................
[CV]  c1=0.07274256234028868, c2=0.03280670164668215, score=0.815575 -   1.7s
[CV] c1=1.129501798705037, c2=0.020140916704590495 ...................
[CV]  c1=1.129501798705037, c2=0.020140916704590495, score=0.866417 -   1.5s
[CV] c1=1.119719790930437, c2=0.054437062769718686 ...................
[CV]  c1=1.119719790930437, c2=0.054437062769718686, score=0.817039 -   1.6s
[CV] c1=0.19452520614152963, c2=0.07921367781554413 ..................
[CV]  c1=0.19452520614152963, c2=0.07921367781554413, score=0.837271 -   1.2s
Training done in: 10.069118s
     Saving training model...
        Saving training model done in: 0.014113s
*********************************
Prediction done in: 0.045015s