Run6_v10.txt 29.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True False
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003691s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0         1
0       lemma         2
1      postag        CD
2    -1:lemma  fructose
3   -1:postag        NN
4      hUpper     False
5      hLower     False
6      hGreek     False
7        symb     False
8    word[:1]         2
9    -2:lemma       Cra
10  -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
            0           1
0       lemma  delta-arca
1      postag          NN
2    -1:lemma           _
3   -1:postag          NN
4    +1:lemma           _
5   +1:postag          CD
6      hUpper        True
7      hLower        True
8      hGreek       False
9        symb        True
10   word[:1]           d
11   word[:2]          de
12   -2:lemma     affyexp
13  -2:postag          JJ
14   +2:lemma     glucose
15  +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.793425 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.867343 -   1.3s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.690464 -   1.7s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.927296 -   1.5s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.865012 -   1.4s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.929588 -   1.5s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.794911 -   1.3s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.879117 -   1.7s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.778490 -   1.3s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.865854 -   1.4s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.935899 -   1.4s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.867343 -   1.4s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.821783 -   1.5s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.939330 -   1.5s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.853112 -   1.3s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.865456 -   1.4s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.894301 -   1.3s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.865456 -   1.3s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.894474 -   1.4s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.834907 -   1.3s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.858859 -   1.4s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.841065 -   1.3s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.935899 -   1.6s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.828226 -   1.6s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.854635 -   1.3s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.757614 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.812241 -   1.4s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.835814 -   1.6s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.879798 -   1.6s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.700963 -   1.8s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.900542 -   1.2s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.736765 -   1.6s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.798780 -   1.6s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.798780 -   1.8s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.835917 -   1.5s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.783001 -   1.5s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.733105 -   1.6s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.835917 -   1.4s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.922662 -   1.6s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.881053 -   1.5s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.733105 -   1.6s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.827485 -   1.4s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.927296 -   1.6s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.852443 -   1.6s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.800079 -   1.6s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.826682 -   1.3s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.813331 -   1.6s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.946103 -   1.7s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.889591 -   1.6s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.935899 -   1.5s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.932061 -   1.7s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.939262 -   1.6s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.786606 -   1.5s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.841250 -   1.7s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.578499 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.651358 -   1.6s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.862461 -   1.4s
[CV] c1=0.33724815678767384, c2=0.15538629766986978 ..................
[CV]  c1=0.33724815678767384, c2=0.15538629766986978, score=0.690464 -   1.9s
[CV] c1=0.2074777767896592, c2=0.02494933488641053 ...................
[CV]  c1=0.2074777767896592, c2=0.02494933488641053, score=0.946103 -   1.7s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.865747 -   1.6s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.624531 -   1.6s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.843508 -   1.6s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.876459 -   1.3s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.922539 -   1.4s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.762974 -   1.5s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.847753 -   1.5s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.806351 -   1.3s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.880403 -   1.4s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.763999 -   1.5s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.923088 -   1.5s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.813331 -   1.5s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.922539 -   1.2s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.926416 -   1.4s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.858859 -   1.3s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.857836 -   1.5s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.922388 -   1.4s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.914935 -   1.6s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.807541 -   1.5s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.854088 -   1.5s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.918393 -   1.4s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.711517 -   1.4s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.763999 -   1.5s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.857572 -   1.5s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.861553 -   1.2s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.852644 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.931826 -   1.5s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.843508 -   1.7s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.599896 -   1.5s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.816823 -   1.6s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.879162 -   1.4s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.904019 -   1.4s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.753193 -   1.7s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.922388 -   1.5s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.932061 -   1.5s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.902301 -   1.4s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.813331 -   1.6s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.894301 -   1.5s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.789267 -   1.5s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.894301 -   1.5s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.924447 -   1.4s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.951395 -   1.6s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.858859 -   1.6s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.778490 -   1.2s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.826650 -   1.3s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.656233 -   1.4s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.860761 -   1.5s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.852019 -   1.4s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.826698 -   1.5s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.618972 -   1.4s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.838737 -   1.4s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.922539 -   1.3s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.932061 -   1.6s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.819518 -   1.6s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.845018 -   1.2s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.725655 -   1.6s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.931826 -   1.5s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.862377 -   1.5s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.728502 -   1.5s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.904019 -   1.3s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.824101 -   1.5s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.849255 -   1.5s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.852603 -   1.6s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.807541 -   1.4s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.933427 -   1.2s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.834495 -   1.5s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.834436 -   1.4s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.918102 -   1.5s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.923088 -   1.4s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.813331 -   1.4s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.792801 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.922388 -   1.6s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.871771 -   1.6s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.733105 -   1.6s
[CV] c1=0.15419879816724802, c2=0.012826859604695727 .................
[CV]  c1=0.15419879816724802, c2=0.012826859604695727, score=0.951395 -   1.6s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.857594 -   1.5s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.867318 -   1.8s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.846341 -   1.6s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.867343 -   1.4s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.879798 -   1.2s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.898930 -   1.6s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.881616 -   1.4s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.935899 -   1.4s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.901459 -   1.5s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.928279 -   1.3s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.914826 -   1.5s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.793739 -   1.4s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.902301 -   1.3s
[CV] c1=1.2084188241795155, c2=0.05654297208049296 ...................
[CV]  c1=1.2084188241795155, c2=0.05654297208049296, score=0.808333 -   1.5s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.744355 -   1.5s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.946103 -   1.6s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.946103 -   1.6s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.853112 -   1.5s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.789267 -   1.3s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.926731 -   1.2s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.864529 -   1.5s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.918393 -   1.3s
[CV] c1=0.09691034944164684, c2=0.004204871857834622 .................
[CV]  c1=0.09691034944164684, c2=0.004204871857834622, score=0.917968 -   1.6s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.723972 -   1.5s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.843948 -   1.3s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.914386 -   1.2s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.904019 -   1.3s
[CV] c1=0.1805136966403216, c2=0.07777892802577017 ...................
[CV]  c1=0.1805136966403216, c2=0.07777892802577017, score=0.860367 -   1.3s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.877204 -   1.3s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.903885 -   1.3s
[CV] c1=0.7138037380094754, c2=0.09821277598627046 ...................
[CV]  c1=0.7138037380094754, c2=0.09821277598627046, score=0.824101 -   1.4s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.725655 -   1.5s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.728502 -   1.7s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.840805 -   1.5s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.922388 -   1.5s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.871305 -   1.1s
[CV] c1=0.7077783869918963, c2=0.018821218321315464 ..................
[CV]  c1=0.7077783869918963, c2=0.018821218321315464, score=0.838552 -   1.4s
[CV] c1=0.880769811590579, c2=0.06496317380759915 ....................
[CV]  c1=0.880769811590579, c2=0.06496317380759915, score=0.816538 -   1.4s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.951395 -   1.8s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.831561 -   1.6s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.857572 -   1.2s
[CV] c1=0.1226651147490872, c2=0.0059614661118123965 .................
[CV]  c1=0.1226651147490872, c2=0.0059614661118123965, score=0.951395 -   1.7s
[CV] c1=0.12921575529399648, c2=0.022522239009519832 .................
[CV]  c1=0.12921575529399648, c2=0.022522239009519832, score=0.935899 -   1.6s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.850847 -   1.4s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.921722 -   1.6s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.683730 -   1.4s
[CV] c1=0.16931667210800003, c2=0.01855789911042521 ..................
[CV]  c1=0.16931667210800003, c2=0.01855789911042521, score=0.814557 -   1.6s
[CV] c1=0.49390388777624017, c2=0.07495517296178955 ..................
[CV]  c1=0.49390388777624017, c2=0.07495517296178955, score=0.857594 -   1.3s
[CV] c1=0.16045199952287093, c2=0.03349544150437709 ..................
[CV]  c1=0.16045199952287093, c2=0.03349544150437709, score=0.710879 -   1.5s
[CV] c1=1.102798163509896, c2=0.07441446987912796 ....................
[CV]  c1=1.102798163509896, c2=0.07441446987912796, score=0.599896 -   1.5s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.839397 -   1.3s
[CV] c1=2.0772840450026786, c2=0.01612403394563899 ...................
[CV]  c1=2.0772840450026786, c2=0.01612403394563899, score=0.825639 -   1.4s
[CV] c1=0.9447446796043686, c2=0.014950641482488432 ..................
[CV]  c1=0.9447446796043686, c2=0.014950641482488432, score=0.816538 -   1.5s
[CV] c1=0.22034340464816077, c2=0.023290360446083555 .................
[CV]  c1=0.22034340464816077, c2=0.023290360446083555, score=0.911621 -   2.0s
[CV] c1=0.2992471675291976, c2=0.04387206593008659 ...................
[CV]  c1=0.2992471675291976, c2=0.04387206593008659, score=0.946103 -   1.7s
[CV] c1=0.10042756262488722, c2=0.2272603272440672 ...................
[CV]  c1=0.10042756262488722, c2=0.2272603272440672, score=0.922662 -   1.3s
Training done in: 9.974953s
     Saving training model...
        Saving training model done in: 0.014405s
*********************************
Prediction done in: 0.041326s