Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

...@@ -191,39 +191,33 @@ if __name__ == "__main__": ...@@ -191,39 +191,33 @@ if __name__ == "__main__":
191 print(" Number of testing class I: {}".format(y_test.count('I'))) 191 print(" Number of testing class I: {}".format(y_test.count('I')))
192 print(" Shape of testing matrix: {}".format(X_test.shape)) 192 print(" Shape of testing matrix: {}".format(X_test.shape))
193 193
194 - jobs = -1
195 - paramGrid = []
196 - nIter = 20
197 - crossV = 10
198 - print("Defining randomized grid search...")
199 if args.classifier == 'SVM': 194 if args.classifier == 'SVM':
200 # SVM 195 # SVM
201 - classifier = SVC(args.kernel) 196 + myClassifier = SVC(args.kernel)
202 - elif args.classifier == 'BernoulliNB': 197 + elif args.myClassifier == 'BernoulliNB':
203 # BernoulliNB 198 # BernoulliNB
204 - classifier = BernoulliNB() 199 + myClassifier = BernoulliNB()
205 elif args.classifier == 'kNN': 200 elif args.classifier == 'kNN':
206 # kNN 201 # kNN
207 - k_range = list(range(1, 7, 2)) 202 + myClassifier = KNeighborsClassifier()
208 - classifier = KNeighborsClassifier()
209 else: 203 else:
210 print("Bad classifier") 204 print("Bad classifier")
211 exit() 205 exit()
212 print(" Done!") 206 print(" Done!")
213 207
214 print("Training...") 208 print("Training...")
215 - classifier.fit(X_train, y_train) 209 + myClassifier.fit(X_train, y_train)
216 print(" Done!") 210 print(" Done!")
217 211
218 - y_pred = classifier.predict(X_test) 212 + y_pred = myClassifier.predict(X_test)
219 - best_parameters = classifier.best_estimator_.get_params() 213 + best_parameters = myClassifier.best_estimator_.get_params()
220 print(" Done!") 214 print(" Done!")
221 215
222 print("Saving report...") 216 print("Saving report...")
223 with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile: 217 with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile:
224 oFile.write('********** EVALUATION REPORT **********\n') 218 oFile.write('********** EVALUATION REPORT **********\n')
225 oFile.write('Reduction: {}\n'.format(args.reduction)) 219 oFile.write('Reduction: {}\n'.format(args.reduction))
226 - oFile.write('Classifier: {}\n'.format(args.classifier)) 220 + oFile.write('Classifier: {}\n'.format(args.myClassifier))
227 oFile.write('Kernel: {}\n'.format(args.kernel)) 221 oFile.write('Kernel: {}\n'.format(args.kernel))
228 oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred))) 222 oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred)))
229 oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted'))) 223 oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted')))
......