Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

......@@ -191,39 +191,33 @@ if __name__ == "__main__":
print(" Number of testing class I: {}".format(y_test.count('I')))
print(" Shape of testing matrix: {}".format(X_test.shape))
jobs = -1
paramGrid = []
nIter = 20
crossV = 10
print("Defining randomized grid search...")
if args.classifier == 'SVM':
# SVM
classifier = SVC(args.kernel)
elif args.classifier == 'BernoulliNB':
myClassifier = SVC(args.kernel)
elif args.myClassifier == 'BernoulliNB':
# BernoulliNB
classifier = BernoulliNB()
myClassifier = BernoulliNB()
elif args.classifier == 'kNN':
# kNN
k_range = list(range(1, 7, 2))
classifier = KNeighborsClassifier()
myClassifier = KNeighborsClassifier()
else:
print("Bad classifier")
exit()
print(" Done!")
print("Training...")
classifier.fit(X_train, y_train)
myClassifier.fit(X_train, y_train)
print(" Done!")
y_pred = classifier.predict(X_test)
best_parameters = classifier.best_estimator_.get_params()
y_pred = myClassifier.predict(X_test)
best_parameters = myClassifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile:
oFile.write('********** EVALUATION REPORT **********\n')
oFile.write('Reduction: {}\n'.format(args.reduction))
oFile.write('Classifier: {}\n'.format(args.classifier))
oFile.write('Classifier: {}\n'.format(args.myClassifier))
oFile.write('Kernel: {}\n'.format(args.kernel))
oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred)))
oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted')))
......