Showing
2 changed files
with
144 additions
and
1 deletions
| ... | @@ -118,7 +118,7 @@ def main(): | ... | @@ -118,7 +118,7 @@ def main(): |
| 118 | transforms.ToTensor(), | 118 | transforms.ToTensor(), |
| 119 | transforms.Normalize((0.1307,), (0.3081,)), | 119 | transforms.Normalize((0.1307,), (0.3081,)), |
| 120 | ]) | 120 | ]) |
| 121 | - dataset1 = datasets.MNIST('../data', train=True, download=False, | 121 | + dataset1 = datasets.MNIST('../data', train=True, download=True, |
| 122 | transform=transform) | 122 | transform=transform) |
| 123 | dataset2 = datasets.MNIST('../data', train=False, | 123 | dataset2 = datasets.MNIST('../data', train=False, |
| 124 | transform=transform) | 124 | transform=transform) | ... | ... |
ejemplo-npu/mnist_npu_example_v2.py
0 → 100644
| 1 | +from __future__ import print_function | ||
| 2 | +import argparse | ||
| 3 | +import torch | ||
| 4 | +import torch.npu | ||
| 5 | +import torch.nn as nn | ||
| 6 | +import torch.nn.functional as F | ||
| 7 | +import torch.optim as optim | ||
| 8 | +from torchvision import datasets, transforms | ||
| 9 | +from torch.optim.lr_scheduler import StepLR | ||
| 10 | + | ||
| 11 | + | ||
| 12 | +class Net(nn.Module): | ||
| 13 | + def __init__(self): | ||
| 14 | + super(Net, self).__init__() | ||
| 15 | + self.conv1 = nn.Conv2d(1, 32, 3, 1) | ||
| 16 | + self.conv2 = nn.Conv2d(32, 64, 3, 1) | ||
| 17 | + self.dropout1 = nn.Dropout(0.25) | ||
| 18 | + self.dropout2 = nn.Dropout(0.5) | ||
| 19 | + self.fc1 = nn.Linear(9216, 128) | ||
| 20 | + self.fc2 = nn.Linear(128, 10) | ||
| 21 | + | ||
| 22 | + def forward(self, x): | ||
| 23 | + x = self.conv1(x) | ||
| 24 | + x = F.relu(x) | ||
| 25 | + x = self.conv2(x) | ||
| 26 | + x = F.relu(x) | ||
| 27 | + x = F.max_pool2d(x, 2) | ||
| 28 | + x = self.dropout1(x) | ||
| 29 | + x = torch.flatten(x, 1) | ||
| 30 | + x = self.fc1(x) | ||
| 31 | + x = F.relu(x) | ||
| 32 | + x = self.dropout2(x) | ||
| 33 | + x = self.fc2(x) | ||
| 34 | + output = F.log_softmax(x, dim=1) | ||
| 35 | + return output | ||
| 36 | + | ||
| 37 | + | ||
| 38 | +def train(args, model, device, train_loader, optimizer, epoch): | ||
| 39 | + model.train() | ||
| 40 | + for batch_idx, (data, target) in enumerate(train_loader): | ||
| 41 | + if device.type=="npu": | ||
| 42 | + target = target.to(torch.int32) | ||
| 43 | + data, target = data.to(device), target.to(device) | ||
| 44 | + optimizer.zero_grad() | ||
| 45 | + output = model(data) | ||
| 46 | + loss = F.nll_loss(output, target) | ||
| 47 | + loss.backward() | ||
| 48 | + optimizer.step() | ||
| 49 | + if batch_idx % args.log_interval == 0: | ||
| 50 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
| 51 | + epoch, batch_idx * len(data), len(train_loader.dataset), | ||
| 52 | + 100. * batch_idx / len(train_loader), loss.item())) | ||
| 53 | + if args.dry_run: | ||
| 54 | + break | ||
| 55 | + | ||
| 56 | + | ||
| 57 | +def test(model, device, test_loader): | ||
| 58 | + model.eval() | ||
| 59 | + test_loss = 0 | ||
| 60 | + correct = 0 | ||
| 61 | + with torch.no_grad(): | ||
| 62 | + for data, target in test_loader: | ||
| 63 | + if device.type=="npu": | ||
| 64 | + target = target.to(torch.int32) | ||
| 65 | + data, target = data.to(device), target.to(device) | ||
| 66 | + output = model(data) | ||
| 67 | + test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | ||
| 68 | + pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | ||
| 69 | + correct += pred.eq(target.view_as(pred)).sum().item() | ||
| 70 | + | ||
| 71 | + test_loss /= len(test_loader.dataset) | ||
| 72 | + | ||
| 73 | + print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
| 74 | + test_loss, correct, len(test_loader.dataset), | ||
| 75 | + 100. * correct / len(test_loader.dataset))) | ||
| 76 | + | ||
| 77 | + | ||
| 78 | +def main(): | ||
| 79 | + # Training settings | ||
| 80 | + parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
| 81 | + parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
| 82 | + help='input batch size for training (default: 64)') | ||
| 83 | + parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
| 84 | + help='input batch size for testing (default: 1000)') | ||
| 85 | + parser.add_argument('--epochs', type=int, default=14, metavar='N', | ||
| 86 | + help='number of epochs to train (default: 14)') | ||
| 87 | + parser.add_argument('--lr', type=float, default=1.0, metavar='LR', | ||
| 88 | + help='learning rate (default: 1.0)') | ||
| 89 | + parser.add_argument('--gamma', type=float, default=0.7, metavar='M', | ||
| 90 | + help='Learning rate step gamma (default: 0.7)') | ||
| 91 | + parser.add_argument('--no-cuda', action='store_true', default=False, | ||
| 92 | + help='disables CUDA training') | ||
| 93 | + parser.add_argument('--dry-run', action='store_true', default=False, | ||
| 94 | + help='quickly check a single pass') | ||
| 95 | + parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
| 96 | + help='random seed (default: 1)') | ||
| 97 | + parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
| 98 | + help='how many batches to wait before logging training status') | ||
| 99 | + parser.add_argument('--save-model', action='store_true', default=False, | ||
| 100 | + help='For Saving the current Model') | ||
| 101 | + args = parser.parse_args() | ||
| 102 | + use_cuda = not args.no_cuda and torch.npu.is_available() | ||
| 103 | + | ||
| 104 | + torch.manual_seed(args.seed) | ||
| 105 | + | ||
| 106 | + device = torch.device("npu:0" if use_cuda else "cpu") | ||
| 107 | + | ||
| 108 | + train_kwargs = {'batch_size': args.batch_size} | ||
| 109 | + test_kwargs = {'batch_size': args.test_batch_size} | ||
| 110 | + if use_cuda: | ||
| 111 | + cuda_kwargs = {'num_workers': 1, | ||
| 112 | + 'pin_memory': True, | ||
| 113 | + 'shuffle': True} | ||
| 114 | + train_kwargs.update(cuda_kwargs) | ||
| 115 | + test_kwargs.update(cuda_kwargs) | ||
| 116 | + | ||
| 117 | + transform=transforms.Compose([ | ||
| 118 | + transforms.ToTensor(), | ||
| 119 | + transforms.Normalize((0.1307,), (0.3081,)), | ||
| 120 | + ]) | ||
| 121 | + dataset1 = datasets.MNIST('../data', train=True, download=True, | ||
| 122 | + transform=transform) | ||
| 123 | + dataset2 = datasets.MNIST('../data', train=False, | ||
| 124 | + transform=transform) | ||
| 125 | + train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) | ||
| 126 | + test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | ||
| 127 | + | ||
| 128 | + model = Net().to(device) | ||
| 129 | + optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | ||
| 130 | + | ||
| 131 | + scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | ||
| 132 | + for epoch in range(1, args.epochs + 1): | ||
| 133 | + train(args, model, device, train_loader, optimizer, epoch) | ||
| 134 | + test(model, device, test_loader) | ||
| 135 | + scheduler.step() | ||
| 136 | + | ||
| 137 | + if args.save_model: | ||
| 138 | + torch.save(model.state_dict(), "mnist_cnn.pt") | ||
| 139 | + | ||
| 140 | + | ||
| 141 | +if __name__ == '__main__': | ||
| 142 | + main() | ||
| 143 | + |
-
Please register or login to post a comment