Toggle navigation
Toggle navigation
This project
Loading...
Sign in
Carlos-Francisco Méndez-Cruz
/
curso-alianza-2024
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
cmendezc
2024-10-14 19:38:37 -0600
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
1b7263673d2cbdb5c30a012b5c3d710c43c462ad
1b726367
1 parent
8e151235
NPU examples
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
144 additions
and
1 deletions
ejemplo-npu/mnist_npu_example.py
ejemplo-npu/mnist_npu_example_v2.py
ejemplo-npu/mnist_npu_example.py
View file @
1b72636
...
...
@@ -118,7 +118,7 @@ def main():
transforms
.
ToTensor
(),
transforms
.
Normalize
((
0.1307
,),
(
0.3081
,)),
])
dataset1
=
datasets
.
MNIST
(
'../data'
,
train
=
True
,
download
=
Fals
e
,
dataset1
=
datasets
.
MNIST
(
'../data'
,
train
=
True
,
download
=
Tru
e
,
transform
=
transform
)
dataset2
=
datasets
.
MNIST
(
'../data'
,
train
=
False
,
transform
=
transform
)
...
...
ejemplo-npu/mnist_npu_example_v2.py
0 → 100644
View file @
1b72636
from
__future__
import
print_function
import
argparse
import
torch
import
torch.npu
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.optim
as
optim
from
torchvision
import
datasets
,
transforms
from
torch.optim.lr_scheduler
import
StepLR
class
Net
(
nn
.
Module
):
def
__init__
(
self
):
super
(
Net
,
self
)
.
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
32
,
3
,
1
)
self
.
conv2
=
nn
.
Conv2d
(
32
,
64
,
3
,
1
)
self
.
dropout1
=
nn
.
Dropout
(
0.25
)
self
.
dropout2
=
nn
.
Dropout
(
0.5
)
self
.
fc1
=
nn
.
Linear
(
9216
,
128
)
self
.
fc2
=
nn
.
Linear
(
128
,
10
)
def
forward
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
conv2
(
x
)
x
=
F
.
relu
(
x
)
x
=
F
.
max_pool2d
(
x
,
2
)
x
=
self
.
dropout1
(
x
)
x
=
torch
.
flatten
(
x
,
1
)
x
=
self
.
fc1
(
x
)
x
=
F
.
relu
(
x
)
x
=
self
.
dropout2
(
x
)
x
=
self
.
fc2
(
x
)
output
=
F
.
log_softmax
(
x
,
dim
=
1
)
return
output
def
train
(
args
,
model
,
device
,
train_loader
,
optimizer
,
epoch
):
model
.
train
()
for
batch_idx
,
(
data
,
target
)
in
enumerate
(
train_loader
):
if
device
.
type
==
"npu"
:
target
=
target
.
to
(
torch
.
int32
)
data
,
target
=
data
.
to
(
device
),
target
.
to
(
device
)
optimizer
.
zero_grad
()
output
=
model
(
data
)
loss
=
F
.
nll_loss
(
output
,
target
)
loss
.
backward
()
optimizer
.
step
()
if
batch_idx
%
args
.
log_interval
==
0
:
print
(
'Train Epoch: {} [{}/{} ({:.0f}
%
)]
\t
Loss: {:.6f}'
.
format
(
epoch
,
batch_idx
*
len
(
data
),
len
(
train_loader
.
dataset
),
100.
*
batch_idx
/
len
(
train_loader
),
loss
.
item
()))
if
args
.
dry_run
:
break
def
test
(
model
,
device
,
test_loader
):
model
.
eval
()
test_loss
=
0
correct
=
0
with
torch
.
no_grad
():
for
data
,
target
in
test_loader
:
if
device
.
type
==
"npu"
:
target
=
target
.
to
(
torch
.
int32
)
data
,
target
=
data
.
to
(
device
),
target
.
to
(
device
)
output
=
model
(
data
)
test_loss
+=
F
.
nll_loss
(
output
,
target
,
reduction
=
'sum'
)
.
item
()
# sum up batch loss
pred
=
output
.
argmax
(
dim
=
1
,
keepdim
=
True
)
# get the index of the max log-probability
correct
+=
pred
.
eq
(
target
.
view_as
(
pred
))
.
sum
()
.
item
()
test_loss
/=
len
(
test_loader
.
dataset
)
print
(
'
\n
Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}
%
)
\n
'
.
format
(
test_loss
,
correct
,
len
(
test_loader
.
dataset
),
100.
*
correct
/
len
(
test_loader
.
dataset
)))
def
main
():
# Training settings
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch MNIST Example'
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
64
,
metavar
=
'N'
,
help
=
'input batch size for training (default: 64)'
)
parser
.
add_argument
(
'--test-batch-size'
,
type
=
int
,
default
=
1000
,
metavar
=
'N'
,
help
=
'input batch size for testing (default: 1000)'
)
parser
.
add_argument
(
'--epochs'
,
type
=
int
,
default
=
14
,
metavar
=
'N'
,
help
=
'number of epochs to train (default: 14)'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
1.0
,
metavar
=
'LR'
,
help
=
'learning rate (default: 1.0)'
)
parser
.
add_argument
(
'--gamma'
,
type
=
float
,
default
=
0.7
,
metavar
=
'M'
,
help
=
'Learning rate step gamma (default: 0.7)'
)
parser
.
add_argument
(
'--no-cuda'
,
action
=
'store_true'
,
default
=
False
,
help
=
'disables CUDA training'
)
parser
.
add_argument
(
'--dry-run'
,
action
=
'store_true'
,
default
=
False
,
help
=
'quickly check a single pass'
)
parser
.
add_argument
(
'--seed'
,
type
=
int
,
default
=
1
,
metavar
=
'S'
,
help
=
'random seed (default: 1)'
)
parser
.
add_argument
(
'--log-interval'
,
type
=
int
,
default
=
10
,
metavar
=
'N'
,
help
=
'how many batches to wait before logging training status'
)
parser
.
add_argument
(
'--save-model'
,
action
=
'store_true'
,
default
=
False
,
help
=
'For Saving the current Model'
)
args
=
parser
.
parse_args
()
use_cuda
=
not
args
.
no_cuda
and
torch
.
npu
.
is_available
()
torch
.
manual_seed
(
args
.
seed
)
device
=
torch
.
device
(
"npu:0"
if
use_cuda
else
"cpu"
)
train_kwargs
=
{
'batch_size'
:
args
.
batch_size
}
test_kwargs
=
{
'batch_size'
:
args
.
test_batch_size
}
if
use_cuda
:
cuda_kwargs
=
{
'num_workers'
:
1
,
'pin_memory'
:
True
,
'shuffle'
:
True
}
train_kwargs
.
update
(
cuda_kwargs
)
test_kwargs
.
update
(
cuda_kwargs
)
transform
=
transforms
.
Compose
([
transforms
.
ToTensor
(),
transforms
.
Normalize
((
0.1307
,),
(
0.3081
,)),
])
dataset1
=
datasets
.
MNIST
(
'../data'
,
train
=
True
,
download
=
True
,
transform
=
transform
)
dataset2
=
datasets
.
MNIST
(
'../data'
,
train
=
False
,
transform
=
transform
)
train_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset1
,
**
train_kwargs
)
test_loader
=
torch
.
utils
.
data
.
DataLoader
(
dataset2
,
**
test_kwargs
)
model
=
Net
()
.
to
(
device
)
optimizer
=
optim
.
Adadelta
(
model
.
parameters
(),
lr
=
args
.
lr
)
scheduler
=
StepLR
(
optimizer
,
step_size
=
1
,
gamma
=
args
.
gamma
)
for
epoch
in
range
(
1
,
args
.
epochs
+
1
):
train
(
args
,
model
,
device
,
train_loader
,
optimizer
,
epoch
)
test
(
model
,
device
,
test_loader
)
scheduler
.
step
()
if
args
.
save_model
:
torch
.
save
(
model
.
state_dict
(),
"mnist_cnn.pt"
)
if
__name__
==
'__main__'
:
main
()
Please
register
or
login
to post a comment