Carlos-Francisco Méndez-Cruz

LSA soft clustering

......@@ -109,7 +109,7 @@ n = 0
with open("vectors_file.txt", "w") as f:
for pertenence, sentence in zip(corpus_lsa, sentences):
if n_docs <= 0:
# print "%s\t\t%s" % (pertenence, sentence.split("\t")[0])
print("%s\t\t%s" % (pertenence, sentence.split("\t")[0]))
p = [dict(pertenence)[x] if x in dict(pertenence) else 0.0
for x in range(n_topics)]
f.write(
......