Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

# -*- encoding: utf-8 -*-
import os
from time import time
import argparse
import scipy
from sklearn import model_selection
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
classification_report, make_scorer
from sklearn.externals import joblib
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.decomposition import TruncatedSVD
from scipy.sparse import csr_matrix
__author__ = 'CMendezC'
# Goal: training, crossvalidation and testing transcription factor structural domain sentences
# Parameters:
# 1) --inputPath Path to read input files.
# 2) --inputTrainingData File to read training data.
# 4) --inputTrainingClasses File to read training classes.
# 3) --inputTestingData File to read testing data.
# 4) --inputTestingClasses File to read testing classes.
# 5) --outputModelPath Path to place output model.
# 6) --outputModelFile File to place output model.
# 7) --outputReportPath Path to place evaluation report.
# 8) --outputReportFile File to place evaluation report.
# 9) --classifier Classifier: BernoulliNB, SVM, kNN.
# 10) --saveData Save matrices
# 11) --kernel Kernel
# 12) --reduction Feature selection or dimensionality reduction
# 13) --removeStopWords Remove most frequent words
# 14) --vectorizer Vectorizer: b=binary, f=frequency, t=tf-idf.
# Ouput:
# 1) Classification model and evaluation report.
# Execution:
# source activate python3
# python training-crossvalidation-testing-dom.py
# --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset
# --inputTrainingData trainData.txt
# --inputTrainingClasses trainClasses.txt
# --inputTestingData testData.txt
# --inputTestingClasses testClasses.txt
# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/models
# --outputModelFile SVM-lineal-model.mod
# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/reports
# --outputReportFile SVM-linear.txt
# --classifier SVM
# --saveData
# --kernel linear
# --reduction SVD200
# --removeStopWords
# --vectorizer b
# --ngrinitial 2
# --ngrfinal 2
# python training-crossvalidation-testing-dom.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset --inputTrainingData trainData.txt --inputTrainingClasses trainClasses.txt --inputTestingData testData.txt --inputTestingClasses testClasses.txt --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel linear --saveData --vectorizer b --ngrinitial 2 --ngrfinal 2 --removeStopWords
# --reduction SVD200
# --removeStopWords
###########################################################
# MAIN PROGRAM #
###########################################################
if __name__ == "__main__":
# Parameter definition
parser = argparse.ArgumentParser(description='Training validation structural domain dataset.')
parser.add_argument("--inputPath", dest="inputPath",
help="Path to read input files", metavar="PATH")
parser.add_argument("--inputTrainingData", dest="inputTrainingData",
help="File to read training data", metavar="FILE")
parser.add_argument("--inputTrainingClasses", dest="inputTrainingClasses",
help="File to read training classes", metavar="FILE")
parser.add_argument("--inputTestingData", dest="inputTestingData",
help="File to read testing data", metavar="FILE")
parser.add_argument("--inputTestingClasses", dest="inputTestingClasses",
help="File to read testing classes", metavar="FILE")
parser.add_argument("--outputModelPath", dest="outputModelPath",
help="Path to place output model", metavar="PATH")
parser.add_argument("--outputModelFile", dest="outputModelFile",
help="File to place output model", metavar="FILE")
parser.add_argument("--outputReportPath", dest="outputReportPath",
help="Path to place evaluation report", metavar="PATH")
parser.add_argument("--outputReportFile", dest="outputReportFile",
help="File to place evaluation report", metavar="FILE")
parser.add_argument("--classifier", dest="classifier",
help="Classifier", metavar="NAME",
choices=('BernoulliNB', 'SVM', 'kNN'), default='SVM')
parser.add_argument("--saveData", dest="saveData", action='store_true',
help="Save matrices")
parser.add_argument("--kernel", dest="kernel",
help="Kernel SVM", metavar="NAME",
choices=('linear', 'rbf', 'poly'), default='linear')
parser.add_argument("--reduction", dest="reduction",
help="Feature selection or dimensionality reduction", metavar="NAME",
choices=('SVD200', 'SVD300', 'CHI250', 'CHI2100'), default=None)
parser.add_argument("--removeStopWords", default=False,
action="store_true", dest="removeStopWords",
help="Remove stop words")
parser.add_argument("--ngrinitial", type=int,
dest="ngrinitial", default=1,
help="Initial n-gram", metavar="INTEGER")
parser.add_argument("--ngrfinal", type=int,
dest="ngrfinal", default=1,
help="Final n-gram", metavar="INTEGER")
parser.add_argument("--vectorizer", dest="vectorizer", required=True,
help="Vectorizer: b=binary, f=frequency, t=tf-idf", metavar="CHAR",
choices=('b', 'f', 't'), default='b')
args = parser.parse_args()
# Printing parameter values
print('-------------------------------- PARAMETERS --------------------------------')
print("Path to read input files: " + str(args.inputPath))
print("File to read training data: " + str(args.inputTrainingData))
print("File to read training classes: " + str(args.inputTrainingClasses))
print("File to read testing data: " + str(args.inputTestingData))
print("File to read testing classes: " + str(args.inputTestingClasses))
print("Path to place output model: " + str(args.outputModelPath))
print("File to place output model: " + str(args.outputModelFile))
print("Path to place evaluation report: " + str(args.outputReportPath))
print("File to place evaluation report: " + str(args.outputReportFile))
print("Classifier: " + str(args.classifier))
print("Save matrices: " + str(args.saveData))
print("Kernel: " + str(args.kernel))
print("Reduction: " + str(args.reduction))
print("Remove stop words: " + str(args.removeStopWords))
print("Initial ngram: " + str(args.ngrinitial))
print("Final ngram: " + str(args.ngrfinal))
print("Vectorizer: " + str(args.vectorizer))
# Start time
t0 = time()
if args.removeStopWords:
pf = stopwords.words('english')
else:
pf = None
y_train = []
trainingData = []
y_test = []
testingData = []
X_train = None
X_test = None
if args.saveData:
print("Reading training data and true classes...")
with open(os.path.join(args.inputPath, args.inputTrainingClasses), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
y_train.append(line)
with open(os.path.join(args.inputPath, args.inputTrainingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
trainingData.append(line)
print(" Done!")
print("Reading testing data and true classes...")
with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
y_test.append(line)
with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \
as iFile:
for line in iFile:
line = line.strip('\r\n')
testingData.append(line)
print(" Done!")
# Create vectorizer
print('Vectorization: {}'.format(args.vectorizer))
if args.vectorizer == "b":
# Binary vectorizer
vectorizer = CountVectorizer(ngram_range=(args.ngrinitial, args.ngrfinal), binary=True, stop_words=pf)
elif args.vectorizer == "f":
# Frequency vectorizer
vectorizer = CountVectorizer(ngram_range=(args.ngrinitial, args.ngrfinal), stop_words=pf)
else:
# Binary vectorizer
vectorizer = TfidfVectorizer(ngram_range=(args.ngrinitial, args.ngrfinal), stop_words=pf)
X_train = csr_matrix(vectorizer.fit_transform(trainingData), dtype='double')
X_test = csr_matrix(vectorizer.transform(testingData), dtype='double')
print(" Saving matrix and classes...")
joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
else:
print(" Loading matrix and classes...")
X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
print(" Number of training classes: {}".format(len(y_train)))
print(" Number of training class DOM: {}".format(y_train.count('DOM')))
print(" Number of training class OTHER: {}".format(y_train.count('OTHER')))
print(" Shape of training matrix: {}".format(X_train.shape))
print(" Number of testing classes: {}".format(len(y_test)))
print(" Number of testing class DOM: {}".format(y_test.count('DOM')))
print(" Number of testing class OTHER: {}".format(y_test.count('OTHER')))
print(" Shape of testing matrix: {}".format(X_test.shape))
# Feature selection and dimensional reduction
if args.reduction is not None:
print('Performing dimensionality reduction or feature selection...', args.reduction)
if args.reduction == 'SVD200':
reduc = TruncatedSVD(n_components=200, random_state=42)
X_train = reduc.fit_transform(X_train)
if args.reduction == 'SVD300':
reduc = TruncatedSVD(n_components=300, random_state=42)
X_train = reduc.fit_transform(X_train)
elif args.reduction == 'CHI250':
reduc = SelectKBest(chi2, k=50)
X_train = reduc.fit_transform(X_train, y_train)
elif args.reduction == 'CHI2100':
reduc = SelectKBest(chi2, k=100)
X_train = reduc.fit_transform(X_train, y_train)
print(" Done!")
print(' New shape of training matrix: ', X_train.shape)
jobs = -1
paramGrid = []
nIter = 20
crossV = 10
# New performance scorer
myScorer = make_scorer(f1_score, average='weighted')
print("Defining randomized grid search...")
if args.classifier == 'SVM':
# SVM
classifier = SVC()
if args.kernel == 'rbf':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight': ['balanced', None]}
elif args.kernel == 'linear':
paramGrid = {'C': scipy.stats.expon(scale=100),
'kernel': ['linear'],
'class_weight': ['balanced', None]}
elif args.kernel == 'poly':
paramGrid = {'C': scipy.stats.expon(scale=100),
'gamma': scipy.stats.expon(scale=.1), 'degree': [2, 3],
'kernel': ['poly'], 'class_weight': ['balanced', None]}
myClassifier = model_selection.RandomizedSearchCV(classifier,
paramGrid, n_iter=nIter,
cv=crossV, n_jobs=jobs, verbose=3, scoring=myScorer)
elif args.classifier == 'BernoulliNB':
# BernoulliNB
classifier = BernoulliNB()
paramGrid = {'alpha': scipy.stats.expon(scale=1.0)}
myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=nIter,
cv=crossV, n_jobs=jobs, verbose=3, scoring=myScorer)
elif args.classifier == 'MultinomialNB':
# MultinomialNB
classifier = MultinomialNB()
paramGrid = {'alpha': scipy.stats.expon(scale=1.0)}
myClassifier = model_selection.RandomizedSearchCV(classifier, paramGrid, n_iter=nIter,
cv=crossV, n_jobs=jobs, verbose=3, scoring=myScorer)
else:
print("Bad classifier")
exit()
print(" Done!")
print("Training...")
myClassifier.fit(X_train, y_train)
print(" Done!")
print("Getting best model and hyperparameters")
print('Best score {}: {}\n'.format(myScorer, myClassifier.best_score_))
print('Best parameters:\n')
best_parameters = myClassifier.best_estimator_.get_params()
for param in sorted(best_parameters.keys()):
print("\t%s: %r\n" % (param, best_parameters[param]))
theBestClassifier = myClassifier.best_estimator_
print(str(theBestClassifier) + '\n')
print("FALTA ESCRIBIR EL MEJOR SCORE (\"myClassifier.best_score_\") A UN ARCHIVO")
print("Testing (prediction in new data)...")
if args.reduction is not None:
X_test = reduc.transform(X_test)
y_pred = myClassifier.predict(X_test)
best_parameters = myClassifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
with open(os.path.join(args.outputReportPath, args.outputReportFile), mode='w', encoding='utf8') as oFile:
oFile.write('********** EVALUATION REPORT **********\n')
oFile.write('Reduction: {}\n'.format(args.reduction))
oFile.write('Classifier: {}\n'.format(args.classifier))
oFile.write('Kernel: {}\n'.format(args.kernel))
oFile.write('Accuracy: {}\n'.format(accuracy_score(y_test, y_pred)))
oFile.write('Precision: {}\n'.format(precision_score(y_test, y_pred, average='weighted')))
oFile.write('Recall: {}\n'.format(recall_score(y_test, y_pred, average='weighted')))
oFile.write('F-score: {}\n'.format(f1_score(y_test, y_pred, average='weighted')))
oFile.write('Confusion matrix: \n')
oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(y_test, y_pred) + '\n')
oFile.write('Best parameters: \n')
for param in sorted(best_parameters.keys()):
oFile.write("\t%s: %r\n" % (param, best_parameters[param]))
print(" Done!")
print("Training and testing done in: %fs" % (time() - t0))