Toggle navigation
Toggle navigation
This project
Loading...
Sign in
Carlos-Francisco Méndez-Cruz
/
lcg-bioinfoI-bionlp
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
Carlos-Francisco Méndez-Cruz
2018-09-20 00:42:18 -0500
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
36a4d6abaa61c65dc06243db466dfd086c061b15
36a4d6ab
1 parent
984c4884
Training and testing binding thrombin dataset
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
8 additions
and
1 deletions
clasificacion-automatica/binding-thrombin-dataset/training-validation-binding-thrombin.py
clasificacion-automatica/binding-thrombin-dataset/training-validation-binding-thrombin.py
View file @
36a4d6a
...
...
@@ -111,8 +111,10 @@ if __name__ == "__main__":
joblib
.
dump
(
X_train
,
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTrainingData
+
'.jlb'
))
joblib
.
dump
(
y_train
,
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTrainingData
+
'.class.jlb'
))
else
:
print
(
" Saving matrix and classes..."
)
X_train
=
joblib
.
load
(
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTrainingData
+
'.jlb'
))
y_train
=
joblib
.
load
(
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTrainingData
+
'.class.jlb'
))
print
(
" Done!"
)
print
(
" Number of training classes: {}"
.
format
(
len
(
y_train
)))
print
(
" Number of training class A: {}"
.
format
(
y_train
.
count
(
'A'
)))
...
...
@@ -139,20 +141,25 @@ if __name__ == "__main__":
joblib
.
dump
(
X_test
,
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTestingData
+
'.jlb'
))
joblib
.
dump
(
y_test
,
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTestingClasses
+
'.class.jlb'
))
else
:
print
(
" Saving matrix and classes..."
)
X_test
=
joblib
.
load
(
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTestingData
+
'.jlb'
))
y_test
=
joblib
.
load
(
os
.
path
.
join
(
args
.
outputModelPath
,
args
.
inputTestingClasses
+
'.class.jlb'
))
print
(
" Done!"
)
print
(
" Number of testing classes: {}"
.
format
(
len
(
y_test
)))
print
(
" Number of testing class A: {}"
.
format
(
y_test
.
count
(
'A'
)))
print
(
" Number of testing class I: {}"
.
format
(
y_test
.
count
(
'I'
)))
print
(
" Shape of testing matrix: {}"
.
format
(
X_test
.
shape
))
if
args
.
classifier
==
"
Multinomial
NB"
:
if
args
.
classifier
==
"
Bernoulli
NB"
:
classifier
=
BernoulliNB
()
elif
args
.
classifier
==
"SVM"
:
classifier
=
SVC
()
elif
args
.
classifier
==
"NearestCentroid"
:
classifier
=
NearestCentroid
()
else
:
print
(
"Bad classifier"
)
exit
()
print
(
"Training..."
)
classifier
.
fit
(
X_train
,
y_train
)
...
...
Please
register
or
login
to post a comment