Carlos-Francisco Méndez-Cruz

Training and testing binding thrombin dataset

......@@ -111,8 +111,10 @@ if __name__ == "__main__":
joblib.dump(X_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
joblib.dump(y_train, os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
else:
print(" Saving matrix and classes...")
X_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.jlb'))
y_train = joblib.load(os.path.join(args.outputModelPath, args.inputTrainingData + '.class.jlb'))
print(" Done!")
print(" Number of training classes: {}".format(len(y_train)))
print(" Number of training class A: {}".format(y_train.count('A')))
......@@ -139,20 +141,25 @@ if __name__ == "__main__":
joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
else:
print(" Saving matrix and classes...")
X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
print(" Done!")
print(" Number of testing classes: {}".format(len(y_test)))
print(" Number of testing class A: {}".format(y_test.count('A')))
print(" Number of testing class I: {}".format(y_test.count('I')))
print(" Shape of testing matrix: {}".format(X_test.shape))
if args.classifier == "MultinomialNB":
if args.classifier == "BernoulliNB":
classifier = BernoulliNB()
elif args.classifier == "SVM":
classifier = SVC()
elif args.classifier == "NearestCentroid":
classifier = NearestCentroid()
else:
print("Bad classifier")
exit()
print("Training...")
classifier.fit(X_train, y_train)
......