Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

......@@ -237,6 +237,7 @@ if __name__ == "__main__":
if args.reduction is not None:
X_test = reduc.transform(X_test)
y_pred = myClassifier.predict(X_test)
best_parameters = myClassifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
......@@ -253,6 +254,8 @@ if __name__ == "__main__":
oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(y_test, y_pred) + '\n')
for param in sorted(best_parameters.keys()):
oFile.write("\t%s: %r\n" % (param, best_parameters[param]))
print(" Done!")
print("Training and testing done in: %fs" % (time() - t0))
......
......@@ -54,14 +54,16 @@ __author__ = 'CMendezC'
# --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/models
# --outputModelFile SVM-lineal-model.mod
# --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/reports
# --outputReportFile SVM-lineal.txt
# --outputReportFile SVM-linear.txt
# --classifier SVM
# --saveData
# --kernel linear
# --reduction SVD200
# --removeStopWords
# --vectorizer b
# python training-crossvalidation-testing-dom.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset --inputTrainingData trainData.txt --inputTrainingClasses trainClasses.txt --inputTestingData testData.txt --inputTestingClasses testClasses.txt --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/reports --outputReportFile SVM-lineal.txt --classifier SVM --kernel linear --saveData --vectorizer b
# --ngrinitial 2
# --ngrfinal 2
# python training-crossvalidation-testing-dom.py --inputPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset --inputTrainingData trainData.txt --inputTrainingClasses trainClasses.txt --inputTestingData testData.txt --inputTestingClasses testClasses.txt --outputModelPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/compu2/bionlp/lcg-bioinfoI-bionlp/clasificacion-automatica/structural-domain-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --kernel linear --saveData --vectorizer b --ngrinitial 2 --ngrfinal 2 --removeStopWords
# --reduction SVD200
# --removeStopWords
......@@ -283,6 +285,7 @@ if __name__ == "__main__":
if args.reduction is not None:
X_test = reduc.transform(X_test)
y_pred = myClassifier.predict(X_test)
best_parameters = myClassifier.best_estimator_.get_params()
print(" Done!")
print("Saving report...")
......@@ -299,6 +302,9 @@ if __name__ == "__main__":
oFile.write(str(confusion_matrix(y_test, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(y_test, y_pred) + '\n')
for param in sorted(best_parameters.keys()):
oFile.write("\t%s: %r\n" % (param, best_parameters[param]))
print(" Done!")
print("Training and testing done in: %fs" % (time() - t0))
......