Toggle navigation
Toggle navigation
This project
Loading...
Sign in
Carlos-Francisco Méndez-Cruz
/
lcg-bioinfoI-bionlp
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
Carlos-Francisco Méndez-Cruz
2019-04-09 12:55:52 -0500
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
187a0c3aeab0c2d7fa9b602b53240fb3a41b75df
187a0c3a
1 parent
38b4c905
Iris dataset for automatic clasification
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
9 deletions
clasificacion-automatica/iris-dataset/trainingEvaluation_Iris_v1.py
clasificacion-automatica/iris-dataset/trainingEvaluation_Iris_v1.py
View file @
187a0c3
...
...
@@ -6,7 +6,6 @@ from optparse import OptionParser
from
sklearn.naive_bayes
import
MultinomialNB
from
sklearn.tree
import
DecisionTreeClassifier
from
sklearn.svm
import
SVC
from
sklearn.neural_network
import
MLPClassifier
from
sklearn.linear_model
import
Perceptron
from
sklearn.metrics
import
accuracy_score
,
precision_score
,
recall_score
,
f1_score
,
confusion_matrix
,
\
classification_report
...
...
@@ -24,7 +23,7 @@ __author__ = 'CMendezC'
# 5) --inputEvaluationClasses File to read test true classes.
# 6) --outputPath Path to place output files.
# 7) --outputFile File to place evaluation report.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, Perceptron
, MLPClassifier
.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, Perceptron.
# Ouput:
# 1) Evaluation report.
...
...
@@ -38,10 +37,8 @@ __author__ = 'CMendezC'
# --inputEvaluationClasses test_TrueClasses.txt
# --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports
# --outputFile report-Iris-MultinomialNB.txt
# --classifier M
LPClassifier
# --classifier M
ultinomialNB
# python trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-Perceptron.txt --classifier Perceptron
###########################################################
...
...
@@ -138,8 +135,6 @@ if __name__ == "__main__":
classifier
=
DecisionTreeClassifier
()
elif
options
.
classifier
==
"Perceptron"
:
classifier
=
Perceptron
()
elif
options
.
classifier
==
"MLPClassifier"
:
classifier
=
MLPClassifier
(
solver
=
'lbfgs'
,
hidden_layer_sizes
=
(
3
))
print
(
" Training..."
)
classifier
.
fit
(
dataTraining
,
trueTrainingClasses
)
...
...
@@ -166,8 +161,8 @@ if __name__ == "__main__":
oFile
.
write
(
str
(
confusion_matrix
(
trueEvaluationClasses
,
y_pred
))
+
'
\n
'
)
oFile
.
write
(
'Classification report:
\n
'
)
oFile
.
write
(
classification_report
(
trueEvaluationClasses
,
y_pred
)
+
'
\n
'
)
if
options
.
classifier
==
"
MLPClassifier
"
:
oFile
.
write
(
"
Weight matrices
\n
"
)
if
options
.
classifier
==
"
Perceptron
"
:
oFile
.
write
(
"
Perceptron
\n
"
)
for
coef
in
classifier
.
coefs_
:
oFile
.
write
(
"coef.shape: {}
\n
"
.
format
(
coef
.
shape
))
print
(
" Saving test report done!"
)
...
...
Please
register
or
login
to post a comment