Carlos-Francisco Méndez-Cruz

Iris dataset for automatic clasification

......@@ -6,7 +6,6 @@ from optparse import OptionParser
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
classification_report
......@@ -24,7 +23,7 @@ __author__ = 'CMendezC'
# 5) --inputEvaluationClasses File to read test true classes.
# 6) --outputPath Path to place output files.
# 7) --outputFile File to place evaluation report.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, Perceptron, MLPClassifier.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, Perceptron.
# Ouput:
# 1) Evaluation report.
......@@ -38,10 +37,8 @@ __author__ = 'CMendezC'
# --inputEvaluationClasses test_TrueClasses.txt
# --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports
# --outputFile report-Iris-MultinomialNB.txt
# --classifier MLPClassifier
# --classifier MultinomialNB
# python trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-Perceptron.txt --classifier Perceptron
###########################################################
......@@ -138,8 +135,6 @@ if __name__ == "__main__":
classifier = DecisionTreeClassifier()
elif options.classifier == "Perceptron":
classifier = Perceptron()
elif options.classifier == "MLPClassifier":
classifier = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(3))
print(" Training...")
classifier.fit(dataTraining, trueTrainingClasses)
......@@ -166,8 +161,8 @@ if __name__ == "__main__":
oFile.write(str(confusion_matrix(trueEvaluationClasses, y_pred)) + '\n')
oFile.write('Classification report: \n')
oFile.write(classification_report(trueEvaluationClasses, y_pred) + '\n')
if options.classifier == "MLPClassifier":
oFile.write("Weight matrices\n")
if options.classifier == "Perceptron":
oFile.write("Perceptron\n")
for coef in classifier.coefs_:
oFile.write("coef.shape: {}\n".format(coef.shape))
print(" Saving test report done!")
......