Carlos-Francisco Méndez-Cruz

Iris dataset for automatic clasification

...@@ -6,6 +6,7 @@ from optparse import OptionParser ...@@ -6,6 +6,7 @@ from optparse import OptionParser
6 from sklearn.naive_bayes import MultinomialNB 6 from sklearn.naive_bayes import MultinomialNB
7 from sklearn.tree import DecisionTreeClassifier 7 from sklearn.tree import DecisionTreeClassifier
8 from sklearn.svm import SVC 8 from sklearn.svm import SVC
9 +from sklearn.neural_network import MLPClassifier
9 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \ 10 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
10 classification_report 11 classification_report
11 import sys 12 import sys
...@@ -22,23 +23,23 @@ __author__ = 'CMendezC' ...@@ -22,23 +23,23 @@ __author__ = 'CMendezC'
22 # 5) --inputEvaluationClasses File to read test true classes. 23 # 5) --inputEvaluationClasses File to read test true classes.
23 # 6) --outputPath Path to place output files. 24 # 6) --outputPath Path to place output files.
24 # 7) --outputFile File to place evaluation report. 25 # 7) --outputFile File to place evaluation report.
25 -# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree. 26 +# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, MLPClassifier.
26 27
27 # Ouput: 28 # Ouput:
28 # 1) Evaluation report. 29 # 1) Evaluation report.
29 30
30 # Execution: 31 # Execution:
31 # python trainingEvaluation_Iris_v1.py 32 # python trainingEvaluation_Iris_v1.py
32 -# --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset 33 +# --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset
33 # --inputTrainingData training_Data.txt 34 # --inputTrainingData training_Data.txt
34 # --inputTrainingClasses training_TrueClasses.txt 35 # --inputTrainingClasses training_TrueClasses.txt
35 # --inputEvaluationData test_Data.txt 36 # --inputEvaluationData test_Data.txt
36 # --inputEvaluationClasses test_TrueClasses.txt 37 # --inputEvaluationClasses test_TrueClasses.txt
37 -# --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports 38 +# --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports
38 # --outputFile report-Iris-MultinomialNB.txt 39 # --outputFile report-Iris-MultinomialNB.txt
39 -# --classifier MultinomialNB 40 +# --classifier MLPClassifier
40 41
41 -# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MultinomialNB.txt --classifier MultinomialNB 42 +# python trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
42 43
43 ########################################################### 44 ###########################################################
44 # MAIN PROGRAM # 45 # MAIN PROGRAM #
...@@ -132,6 +133,9 @@ if __name__ == "__main__": ...@@ -132,6 +133,9 @@ if __name__ == "__main__":
132 classifier = SVC() 133 classifier = SVC()
133 elif options.classifier == "DecisionTree": 134 elif options.classifier == "DecisionTree":
134 classifier = DecisionTreeClassifier() 135 classifier = DecisionTreeClassifier()
136 + elif options.classifier == "MLPClassifier":
137 + classifier = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(3))
138 +
135 139
136 print(" Training...") 140 print(" Training...")
137 classifier.fit(dataTraining, trueTrainingClasses) 141 classifier.fit(dataTraining, trueTrainingClasses)
......