Carlos-Francisco Méndez-Cruz

Iris dataset for automatic clasification

......@@ -6,6 +6,7 @@ from optparse import OptionParser
from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, \
classification_report
import sys
......@@ -22,23 +23,23 @@ __author__ = 'CMendezC'
# 5) --inputEvaluationClasses File to read test true classes.
# 6) --outputPath Path to place output files.
# 7) --outputFile File to place evaluation report.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree.
# 8) --classifier Classifier: MultinomialNB, SVM, DecisionTree, MLPClassifier.
# Ouput:
# 1) Evaluation report.
# Execution:
# python trainingEvaluation_Iris_v1.py
# --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset
# --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset
# --inputTrainingData training_Data.txt
# --inputTrainingClasses training_TrueClasses.txt
# --inputEvaluationData test_Data.txt
# --inputEvaluationClasses test_TrueClasses.txt
# --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports
# --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports
# --outputFile report-Iris-MultinomialNB.txt
# --classifier MultinomialNB
# --classifier MLPClassifier
# python3 trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/gitlab_repositories/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MultinomialNB.txt --classifier MultinomialNB
# python trainingEvaluation_Iris_v1.py --inputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset --inputTrainingData training_Data.txt --inputTrainingClasses training_TrueClasses.txt --inputEvaluationData test_Data.txt --inputEvaluationClasses test_TrueClasses.txt --outputPath /home/cmendezc/borrame/lcg-bioinfoI-bionlp/clasificacion-automatica/iris-dataset/reports --outputFile report-Iris-MLPClassifier.txt --classifier MLPClassifier
###########################################################
# MAIN PROGRAM #
......@@ -132,6 +133,9 @@ if __name__ == "__main__":
classifier = SVC()
elif options.classifier == "DecisionTree":
classifier = DecisionTreeClassifier()
elif options.classifier == "MLPClassifier":
classifier = MLPClassifier(solver='lbfgs', hidden_layer_sizes=(3))
print(" Training...")
classifier.fit(dataTraining, trueTrainingClasses)
......