Showing
1 changed file
with
33 additions
and
33 deletions
| ... | @@ -157,38 +157,6 @@ if __name__ == "__main__": | ... | @@ -157,38 +157,6 @@ if __name__ == "__main__": | 
| 157 | print(" Number of training class I: {}".format(y_train.count('I'))) | 157 | print(" Number of training class I: {}".format(y_train.count('I'))) | 
| 158 | print(" Shape of training matrix: {}".format(X_train.shape)) | 158 | print(" Shape of training matrix: {}".format(X_train.shape)) | 
| 159 | 159 | ||
| 160 | - print("Reading testing data and true classes...") | ||
| 161 | - X_test = None | ||
| 162 | - if args.saveData: | ||
| 163 | - y_test = [] | ||
| 164 | - testingData = [] | ||
| 165 | - with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \ | ||
| 166 | - as iFile: | ||
| 167 | - for line in iFile: | ||
| 168 | - line = line.strip('\r\n') | ||
| 169 | - listLine = line.split(',') | ||
| 170 | - testingData.append(listLine[1:]) | ||
| 171 | - X_test = csr_matrix(testingData, dtype='double') | ||
| 172 | - with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \ | ||
| 173 | - as iFile: | ||
| 174 | - for line in iFile: | ||
| 175 | - line = line.strip('\r\n') | ||
| 176 | - y_test.append(line) | ||
| 177 | - print(" Saving matrix and classes...") | ||
| 178 | - joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 179 | - joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 180 | - print(" Done!") | ||
| 181 | - else: | ||
| 182 | - print(" Loading matrix and classes...") | ||
| 183 | - X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 184 | - y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 185 | - print(" Done!") | ||
| 186 | - | ||
| 187 | - print(" Number of testing classes: {}".format(len(y_test))) | ||
| 188 | - print(" Number of testing class A: {}".format(y_test.count('A'))) | ||
| 189 | - print(" Number of testing class I: {}".format(y_test.count('I'))) | ||
| 190 | - print(" Shape of testing matrix: {}".format(X_test.shape)) | ||
| 191 | - | ||
| 192 | # Feature selection and dimensional reduction | 160 | # Feature selection and dimensional reduction | 
| 193 | if args.reduction is not None: | 161 | if args.reduction is not None: | 
| 194 | print('Performing dimensionality reduction or feature selection...', args.reduction) | 162 | print('Performing dimensionality reduction or feature selection...', args.reduction) | 
| ... | @@ -252,11 +220,43 @@ if __name__ == "__main__": | ... | @@ -252,11 +220,43 @@ if __name__ == "__main__": | 
| 252 | X_train, y_train = sm.fit_sample(X_train, y_train) | 220 | X_train, y_train = sm.fit_sample(X_train, y_train) | 
| 253 | 221 | ||
| 254 | print(" After transformtion with {}".format(args.imbalanced)) | 222 | print(" After transformtion with {}".format(args.imbalanced)) | 
| 223 | + print(" Number of training classes: {}".format(len(y_train))) | ||
| 224 | + print(" Number of training class A: {}".format(y_train.count('A'))) | ||
| 225 | + print(" Number of training class I: {}".format(y_train.count('I'))) | ||
| 226 | + print(" Shape of training matrix: {}".format(X_train.shape)) | ||
| 227 | + print(" Data transformation done in : %fs" % (time() - t1)) | ||
| 228 | + | ||
| 229 | + print("Reading testing data and true classes...") | ||
| 230 | + X_test = None | ||
| 231 | + if args.saveData: | ||
| 232 | + y_test = [] | ||
| 233 | + testingData = [] | ||
| 234 | + with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \ | ||
| 235 | + as iFile: | ||
| 236 | + for line in iFile: | ||
| 237 | + line = line.strip('\r\n') | ||
| 238 | + listLine = line.split(',') | ||
| 239 | + testingData.append(listLine[1:]) | ||
| 240 | + X_test = csr_matrix(testingData, dtype='double') | ||
| 241 | + with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \ | ||
| 242 | + as iFile: | ||
| 243 | + for line in iFile: | ||
| 244 | + line = line.strip('\r\n') | ||
| 245 | + y_test.append(line) | ||
| 246 | + print(" Saving matrix and classes...") | ||
| 247 | + joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 248 | + joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 249 | + print(" Done!") | ||
| 250 | + else: | ||
| 251 | + print(" Loading matrix and classes...") | ||
| 252 | + X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb')) | ||
| 253 | + y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb')) | ||
| 254 | + print(" Done!") | ||
| 255 | + | ||
| 255 | print(" Number of testing classes: {}".format(len(y_test))) | 256 | print(" Number of testing classes: {}".format(len(y_test))) | 
| 256 | print(" Number of testing class A: {}".format(y_test.count('A'))) | 257 | print(" Number of testing class A: {}".format(y_test.count('A'))) | 
| 257 | print(" Number of testing class I: {}".format(y_test.count('I'))) | 258 | print(" Number of testing class I: {}".format(y_test.count('I'))) | 
| 258 | print(" Shape of testing matrix: {}".format(X_test.shape)) | 259 | print(" Shape of testing matrix: {}".format(X_test.shape)) | 
| 259 | - print(" Data transformation done in : %fs" % (time() - t1)) | ||
| 260 | 260 | ||
| 261 | jobs = -1 | 261 | jobs = -1 | 
| 262 | paramGrid = [] | 262 | paramGrid = [] | ... | ... | 
- 
Please register or login to post a comment