Carlos-Francisco Méndez-Cruz

Training, crossvalidation and testing dataset

...@@ -157,38 +157,6 @@ if __name__ == "__main__": ...@@ -157,38 +157,6 @@ if __name__ == "__main__":
157 print(" Number of training class I: {}".format(y_train.count('I'))) 157 print(" Number of training class I: {}".format(y_train.count('I')))
158 print(" Shape of training matrix: {}".format(X_train.shape)) 158 print(" Shape of training matrix: {}".format(X_train.shape))
159 159
160 - print("Reading testing data and true classes...")
161 - X_test = None
162 - if args.saveData:
163 - y_test = []
164 - testingData = []
165 - with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \
166 - as iFile:
167 - for line in iFile:
168 - line = line.strip('\r\n')
169 - listLine = line.split(',')
170 - testingData.append(listLine[1:])
171 - X_test = csr_matrix(testingData, dtype='double')
172 - with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \
173 - as iFile:
174 - for line in iFile:
175 - line = line.strip('\r\n')
176 - y_test.append(line)
177 - print(" Saving matrix and classes...")
178 - joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
179 - joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
180 - print(" Done!")
181 - else:
182 - print(" Loading matrix and classes...")
183 - X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
184 - y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
185 - print(" Done!")
186 -
187 - print(" Number of testing classes: {}".format(len(y_test)))
188 - print(" Number of testing class A: {}".format(y_test.count('A')))
189 - print(" Number of testing class I: {}".format(y_test.count('I')))
190 - print(" Shape of testing matrix: {}".format(X_test.shape))
191 -
192 # Feature selection and dimensional reduction 160 # Feature selection and dimensional reduction
193 if args.reduction is not None: 161 if args.reduction is not None:
194 print('Performing dimensionality reduction or feature selection...', args.reduction) 162 print('Performing dimensionality reduction or feature selection...', args.reduction)
...@@ -252,12 +220,44 @@ if __name__ == "__main__": ...@@ -252,12 +220,44 @@ if __name__ == "__main__":
252 X_train, y_train = sm.fit_sample(X_train, y_train) 220 X_train, y_train = sm.fit_sample(X_train, y_train)
253 221
254 print(" After transformtion with {}".format(args.imbalanced)) 222 print(" After transformtion with {}".format(args.imbalanced))
255 - print(" Number of testing classes: {}".format(len(y_test))) 223 + print(" Number of training classes: {}".format(len(y_train)))
256 - print(" Number of testing class A: {}".format(y_test.count('A'))) 224 + print(" Number of training class A: {}".format(y_train.count('A')))
257 - print(" Number of testing class I: {}".format(y_test.count('I'))) 225 + print(" Number of training class I: {}".format(y_train.count('I')))
258 - print(" Shape of testing matrix: {}".format(X_test.shape)) 226 + print(" Shape of training matrix: {}".format(X_train.shape))
259 print(" Data transformation done in : %fs" % (time() - t1)) 227 print(" Data transformation done in : %fs" % (time() - t1))
260 228
229 + print("Reading testing data and true classes...")
230 + X_test = None
231 + if args.saveData:
232 + y_test = []
233 + testingData = []
234 + with open(os.path.join(args.inputPath, args.inputTestingData), encoding='utf8', mode='r') \
235 + as iFile:
236 + for line in iFile:
237 + line = line.strip('\r\n')
238 + listLine = line.split(',')
239 + testingData.append(listLine[1:])
240 + X_test = csr_matrix(testingData, dtype='double')
241 + with open(os.path.join(args.inputPath, args.inputTestingClasses), encoding='utf8', mode='r') \
242 + as iFile:
243 + for line in iFile:
244 + line = line.strip('\r\n')
245 + y_test.append(line)
246 + print(" Saving matrix and classes...")
247 + joblib.dump(X_test, os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
248 + joblib.dump(y_test, os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
249 + print(" Done!")
250 + else:
251 + print(" Loading matrix and classes...")
252 + X_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingData + '.jlb'))
253 + y_test = joblib.load(os.path.join(args.outputModelPath, args.inputTestingClasses + '.class.jlb'))
254 + print(" Done!")
255 +
256 + print(" Number of testing classes: {}".format(len(y_test)))
257 + print(" Number of testing class A: {}".format(y_test.count('A')))
258 + print(" Number of testing class I: {}".format(y_test.count('I')))
259 + print(" Shape of testing matrix: {}".format(X_test.shape))
260 +
261 jobs = -1 261 jobs = -1
262 paramGrid = [] 262 paramGrid = []
263 nIter = 20 263 nIter = 20
......