trainingTest_Iris_v0.py
1.04 KB
from sklearn import datasets
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
from sklearn.ensemble import RandomForestClassifier
def scores(list1, list2):
errores = 0
aciertos = 0
if len(list1) != len(list2):
print("ERROR. LENGTH MISMATCH")
for i in range(len(list1)):
if list1[i] == list2[i]:
aciertos += 1
else:
errores += 1
cocienteErrores = errores / len(list1)
return [aciertos, errores, cocienteErrores]
iris = datasets.load_iris()
myMultinomialNB = MultinomialNB()
myBernoulliNB = BernoulliNB()
y_pred = myMultinomialNB.fit(iris.data, iris.target).predict(iris.data)
'''
for i in range(len(iris.target)):
print(str(iris.target[i]) + "\t" + str(y_pred[i]) + "\t" + str(iris.data[i]))
'''
myRandomForest = RandomForestClassifier()
y_pred = myRandomForest.fit(iris.data, iris.target).predict(iris.data)
results = scores(iris.target, y_pred)
print("Errores: {}".format(results[1]))
print("Aciertos: {}".format(results[0]))
print("Cociente error: {}".format(results[2]))