trainingTest_IrisFiles.py 1.58 KB
from sklearn.naive_bayes import MultinomialNB, BernoulliNB

def scores(list1, list2):
    errores = 0
    aciertos = 0
    if len(list1) != len(list2):
        print("ERROR. LENGTH MISMATCH")
    for i in range(len(list1)):
        if list1[i] == list2[i]:
            aciertos += 1
        else:
            errores += 1
    cocienteErrores = errores / len(list1)
    return [aciertos, errores, cocienteErrores]

data = []
lista = []
with open("C:\Users\cmendezc\Dropbox (UNAM-CCG)\Actividades_CCG\LICENCIATURA_LCG\BioInfo-I\lcg-bioinfoI-bionlp\clasificacion-automatica\iris-datasetdata.txt", encoding='utf8') \
        as dataFile:
    for line in dataFile:
        listaFloat = []
        line = line.strip('\n')
        lista = line.split('\t')
        for elem in lista:
            listaFloat.append(float(elem))
        data.append(listaFloat)

print(data)

target = []
with open("C:\\Users\\cmendezc\\Documents\\GENOMICAS\\LICENCIATURA_LCGPDCB\\dataSet_Iris\\true_Classes.txt", encoding='utf8') \
        as classFile:
    for line in classFile:
        line = line.strip('\n')
        target.append(line)

myMultinomialNB = MultinomialNB()
myBernoulliNB = BernoulliNB()

y_pred = myMultinomialNB.fit(data, target).predict(data)

'''
for i in range(len(iris.target)):
    print(str(iris.target[i]) + "\t" + str(y_pred[i]) + "\t" + str(iris.data[i]))
'''

myRandomForest = RandomForestClassifier()
y_pred = myRandomForest.fit(data, target).predict(data)
results = scores(target, y_pred)
print("Errores: {}".format(results[1]))
print("Aciertos: {}".format(results[0]))
print("Cociente error: {}".format(results[2]))