Carlos-Francisco Méndez-Cruz

Classification Iris data set

...@@ -72,7 +72,7 @@ if __name__ == "__main__": ...@@ -72,7 +72,7 @@ if __name__ == "__main__":
72 print("File to read evaluation true classes: " + str(args.inputEvaluationClasses)) 72 print("File to read evaluation true classes: " + str(args.inputEvaluationClasses))
73 print("Path to place output files: " + str(args.outputPath)) 73 print("Path to place output files: " + str(args.outputPath))
74 print("File to write evaluation report: " + str(args.outputFile)) 74 print("File to write evaluation report: " + str(args.outputFile))
75 - print("Classifier: " + str(args.outputFile)) 75 + print("Classifier: " + str(args.classifier))
76 76
77 # Start time 77 # Start time
78 t0 = time() 78 t0 = time()
...@@ -123,7 +123,7 @@ if __name__ == "__main__": ...@@ -123,7 +123,7 @@ if __name__ == "__main__":
123 if args.classifier == "MultinomialNB": 123 if args.classifier == "MultinomialNB":
124 classifier = MultinomialNB() 124 classifier = MultinomialNB()
125 elif args.classifier == "SVM": 125 elif args.classifier == "SVM":
126 - classifier = SVC() 126 + classifier = SVC(kernel="linear")
127 elif args.classifier == "DecisionTree": 127 elif args.classifier == "DecisionTree":
128 classifier = DecisionTreeClassifier() 128 classifier = DecisionTreeClassifier()
129 elif args.classifier == "Perceptron": 129 elif args.classifier == "Perceptron":
...@@ -154,9 +154,9 @@ if __name__ == "__main__": ...@@ -154,9 +154,9 @@ if __name__ == "__main__":
154 oFile.write("{}".format(classifier.coef_)) 154 oFile.write("{}".format(classifier.coef_))
155 oFile.write('Confidence scores: \n') 155 oFile.write('Confidence scores: \n')
156 oFile.write("{}".format(confidence_scores)) 156 oFile.write("{}".format(confidence_scores))
157 - if args.classifier == "SVM": 157 + if args.classifier == "SVM":
158 - oFile.write('Number of support vectors per class: {}\n'.format(classifier.n_support_)) 158 + oFile.write('Number of support vectors per class: {}\n'.format(classifier.n_support_))
159 - oFile.write('Support vectors: {}\n'.format(classifier.support_vectors_)) 159 + oFile.write('Support vectors: {}\n'.format(classifier.support_vectors_))
160 160
161 print(" Saving evaluation report done!") 161 print(" Saving evaluation report done!")
162 162
......