Classification transcription factor structural domain sentences
Showing
1 changed file
with
17 additions
and
6 deletions
... | @@ -47,10 +47,10 @@ from scipy.sparse import csr_matrix | ... | @@ -47,10 +47,10 @@ from scipy.sparse import csr_matrix |
47 | # source activate python3 | 47 | # source activate python3 |
48 | # python training-crossvalidation-testing-dom-v1.py | 48 | # python training-crossvalidation-testing-dom-v1.py |
49 | # --inputPath /home/text-dom-dataset | 49 | # --inputPath /home/text-dom-dataset |
50 | -# --inputTrainingData trainData.txt | 50 | +# --inputTrainingData train-data.txt |
51 | -# --inputTrainingClasses trainClasses.txt | 51 | +# --inputTrainingClasses train-classes.txt |
52 | -# --inputTestingData testData.txt | 52 | +# --inputTestingData test-data.txt |
53 | -# --inputTestingClasses testClasses.txt | 53 | +# --inputTestingClasses test-classes.txt |
54 | # --outputModelPath /home/text-dom-dataset/models | 54 | # --outputModelPath /home/text-dom-dataset/models |
55 | # --outputModelFile SVM-lineal-model.mod | 55 | # --outputModelFile SVM-lineal-model.mod |
56 | # --outputReportPath /home/text-dom-dataset/reports | 56 | # --outputReportPath /home/text-dom-dataset/reports |
... | @@ -59,8 +59,10 @@ from scipy.sparse import csr_matrix | ... | @@ -59,8 +59,10 @@ from scipy.sparse import csr_matrix |
59 | # --saveData | 59 | # --saveData |
60 | # --kernel linear | 60 | # --kernel linear |
61 | # --vectorizer b | 61 | # --vectorizer b |
62 | -# --ngrinitial 2 | 62 | +# --ngrinitial 1 |
63 | -# --ngrfinal 2 | 63 | +# --ngrfinal 1 |
64 | + | ||
65 | +# python training-crossvalidation-testing-dom-v1.py --inputPath /home/laigen-supervised-learning/text-dom-dataset --inputTrainingData train-data.txt --inputTrainingClasses train-classes.txt --inputTestingData test-data.txt --inputTestingClasses test-classes.txt --outputModelPath /home/laigen-supervised-learning/text-dom-dataset/models --outputModelFile SVM-lineal-model.mod --outputReportPath /home/laigen-supervised-learning/text-dom-dataset/reports --outputReportFile SVM-linear.txt --classifier SVM --saveData --kernel linear --vectorizer b --ngrinitial 1 --ngrfinal 1 | ||
64 | 66 | ||
65 | ########################################################### | 67 | ########################################################### |
66 | # MAIN PROGRAM # | 68 | # MAIN PROGRAM # |
... | @@ -284,6 +286,8 @@ if __name__ == "__main__": | ... | @@ -284,6 +286,8 @@ if __name__ == "__main__": |
284 | X_test = reduc.transform(X_test) | 286 | X_test = reduc.transform(X_test) |
285 | y_pred = myClassifier.predict(X_test) | 287 | y_pred = myClassifier.predict(X_test) |
286 | best_parameters = myClassifier.best_estimator_.get_params() | 288 | best_parameters = myClassifier.best_estimator_.get_params() |
289 | + if args.classifier == "SVM": | ||
290 | + confidence_scores = classifier.decision_function(X_test) | ||
287 | print(" Done!") | 291 | print(" Done!") |
288 | 292 | ||
289 | print("Saving report...") | 293 | print("Saving report...") |
... | @@ -304,6 +308,13 @@ if __name__ == "__main__": | ... | @@ -304,6 +308,13 @@ if __name__ == "__main__": |
304 | oFile.write('Best parameters: \n') | 308 | oFile.write('Best parameters: \n') |
305 | for param in sorted(best_parameters.keys()): | 309 | for param in sorted(best_parameters.keys()): |
306 | oFile.write("\t%s: %r\n" % (param, best_parameters[param])) | 310 | oFile.write("\t%s: %r\n" % (param, best_parameters[param])) |
311 | + if args.classifier == "SVM": | ||
312 | + oFile.write('\nWeights assigned to the features: \n') | ||
313 | + oFile.write("{}\n".format(classifier.coef_)) | ||
314 | + oFile.write('Confidence scores: \n') | ||
315 | + oFile.write("{}\n".format(confidence_scores)) | ||
316 | + oFile.write('Number of support vectors per class: \n{}\n'.format(classifier.n_support_)) | ||
317 | + oFile.write('Support vectors: \n{}\n'.format(classifier.support_vectors_)) | ||
307 | 318 | ||
308 | print(" Done!") | 319 | print(" Done!") |
309 | 320 | ... | ... |
-
Please register or login to post a comment