tagging_Sklearn_crfsuite.py
11.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: UTF-8 -*-
import os
from itertools import chain
from optparse import OptionParser
from time import time
from collections import Counter
import nltk
import sklearn
import scipy.stats
import sys
from sklearn.externals import joblib
from sklearn.metrics import make_scorer
from sklearn.cross_validation import cross_val_score
from sklearn.grid_search import RandomizedSearchCV
import sklearn_crfsuite
from sklearn_crfsuite import scorers
from sklearn_crfsuite import metrics
from nltk.corpus import stopwords
from trainingTesting_Sklearn_crfsuite import word2features
from trainingTesting_Sklearn_crfsuite import sent2features
# from trainingTesting_Sklearn_crfsuite import hasNonAlphaNum
# from trainingTesting_Sklearn_crfsuite import hasDigit
# Objective
# Tagging transformed file with CRF model with sklearn-crfsuite.
#
# Input parameters
# --inputPath=PATH Path of transformed files x|y|z
# --modelPath Path to CRF model
# --modelName Model name
# --outputPath=PATH Output path to place output files
# --filteringStopWords Filtering stop words
# --filterSymbols Filtering punctuation marks
# Output
# 1) Tagged files in transformed format
# Examples
# Sentences
# C:\Anaconda2\python tagging_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\classifying_TFSentences\corpus\ECK120011394_FhlA\transformed --modelName aspectsTraining.fStopWords_False.fSymbols_True --modelPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\classifying_TFSentences\corpus\ECK120011394_FhlA\transformed_CRFtagged --filterSymbols > output.taggingCRF.20161107.txt
# C:\Anaconda2\python tagging_Sklearn_crfsuite.py --inputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\classifying_TFSentences\corpus\ECK120011394_FhlA\transformed --modelName sentencesTraining.fStopWords_False.fSymbols_False --modelPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\trainingTest_CRF_TERM_TAGS --outputPath C:\Users\cmendezc\Documents\GENOMICAS\AUTOMATIC_SUMMARIZATION_TFS\classifying_TFSentences\corpus\ECK120011394_FhlA\transformed_CRFtagged > output.taggingCRF.20161107.txt
#################################
# FUNCTIONS #
#################################
def word2features(sent, i):
listElem = sent[i].split('|')
word = listElem[0]
lemma = listElem[1]
postag = listElem[2]
features = {
# Suffixes
#'word[-3:]': word[-3:],
#'word[-2:]': word[-2:],
#'word[-1:]': word[-1:],
#'word.isupper()': word.isupper(),
#'word': word,
#'lemma': lemma,
#'postag': postag,
'lemma[-3:]': lemma[-3:],
'lemma[-2:]': lemma[-2:],
'lemma[-1:]': lemma[-1:],
'lemma[+3:]': lemma[:3],
'lemma[+2:]': lemma[:2],
'lemma[+1:]': lemma[:1],
#'word[:3]': word[:3],
#'word[:2]': word[:2],
#'word[:1]': word[:1],
#'endsConLow()={}'.format(endsConLow(word)): endsConLow(word),
}
if i > 0:
listElem = sent[i - 1].split('|')
word1 = listElem[0]
lemma1 = listElem[1]
postag1 = listElem[2]
features.update({
#'-1:word': word1,
'-1:lemma': lemma1,
'-1:postag': postag1,
})
if i < len(sent) - 1:
listElem = sent[i + 1].split('|')
word1 = listElem[0]
lemma1 = listElem[1]
postag1 = listElem[2]
features.update({
#'+1:word': word1,
'+1:lemma': lemma1,
'+1:postag': postag1,
})
'''
if i > 1:
listElem = sent[i - 2].split('|')
word2 = listElem[0]
lemma2 = listElem[1]
postag2 = listElem[2]
features.update({
'-2:word': word2,
'-2:lemma': lemma2,
})
if i < len(sent) - 2:
listElem = sent[i + 2].split('|')
word2 = listElem[0]
lemma2 = listElem[1]
postag2 = listElem[2]
features.update({
'+2:word': word2,
'+2:lemma': lemma2,
})
trigrams = False
if trigrams:
if i > 2:
listElem = sent[i - 3].split('|')
word3 = listElem[0]
lemma3 = listElem[1]
postag3 = listElem[2]
features.update({
'-3:word': word3,
'-3:lemma': lemma3,
})
if i < len(sent) - 3:
listElem = sent[i + 3].split('|')
word3 = listElem[0]
lemma3 = listElem[1]
postag3 = listElem[2]
features.update({
'+3:word': word3,
'+3:lemma': lemma3,
})
'''
return features
__author__ = 'CMendezC'
##########################################
# MAIN PROGRAM #
##########################################
if __name__ == "__main__":
# Defining parameters
parser = OptionParser()
parser.add_option("--inputPath", dest="inputPath",
help="Path of training data set", metavar="PATH")
parser.add_option("--outputPath", dest="outputPath",
help="Output path to place output files",
metavar="PATH")
parser.add_option("--modelPath", dest="modelPath",
help="Path to read CRF model",
metavar="PATH")
parser.add_option("--modelName", dest="modelName",
help="Model name", metavar="TEXT")
parser.add_option("--filterStopWords", default=False,
action="store_true", dest="filterStopWords",
help="Filtering stop words")
parser.add_option("--filterSymbols", default=False,
action="store_true", dest="filterSymbols",
help="Filtering punctuation marks")
(options, args) = parser.parse_args()
if len(args) > 0:
parser.error("Any parameter given.")
sys.exit(1)
print('-------------------------------- PARAMETERS --------------------------------')
print("Path to read input files: " + options.inputPath)
print("Mode name: " + str(options.modelName))
print("Model path: " + options.modelPath)
print("Path to place output files: " + options.outputPath)
print("Filtering stop words: " + str(options.filterStopWords))
symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{',
'}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...']
# symbols = [sym.decode('utf-8') for sym in ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{',
# '}', '[', ']', '*', '%', '$', '#', '&', '°']]
# symbols = [u'.', u',', u':', u';', u'?', u'!', u'\'', u'"', u'<', u'>', u'(', u')', u'-', u'_', u'/', u'\\', u'¿', u'¡', u'+', u'{',
# u'}', u'[', u']', u'*', u'%', u'$', u'#', u'&', u'°', u'`']
print("Filtering symbols " + str(symbols) + ': ' + str(options.filterSymbols))
print('-------------------------------- PROCESSING --------------------------------')
stopwords = [word.decode('utf-8') for word in stopwords.words('english')]
# Read CRF model
t0 = time()
print('Reading CRF model...')
crf = joblib.load(os.path.join(options.modelPath, 'models', options.modelName + '.mod'))
print("Reading CRF model done in: %fs" % (time() - t0))
print('Processing corpus...')
t0 = time()
# labels = list(['MF', 'TF', 'DFAM', 'DMOT', 'DPOS', 'PRO'])
# Walk directory to read files
for path, dirs, files in os.walk(options.inputPath):
# For each file in dir
for file in files:
print(" Preprocessing file..." + str(file))
sentencesInputData = []
sentencesOutputData = []
with open(os.path.join(options.inputPath, file), "r") as iFile:
lines = iFile.readlines()
for line in lines:
listLine = []
# line = line.decode("utf-8")
for token in line.strip('\n').split():
if options.filterStopWords:
listToken = token.split('|')
lemma = listToken[1]
# Original if lemma in stopwords.words('english'):
if lemma in stopwords:
continue
if options.filterSymbols:
listToken = token.split('|')
lemma = listToken[1]
if lemma in symbols:
if lemma == ',':
print("Coma , identificada")
continue
listLine.append(token)
sentencesInputData.append(listLine)
print(" Sentences input data: " + str(len(sentencesInputData)))
# print sentencesInputData[0]
# print(sent2features(sentencesInputData[0])[0])
# print(sent2labels(sentencesInputData[0]))
X_input = [sent2features(s) for s in sentencesInputData]
print(sent2features(sentencesInputData[0])[0])
# y_test = [sent2labels(s) for s in sentencesInputData]
# Predicting tags
t1 = time()
print(" Predicting tags with model")
y_pred = crf.predict(X_input)
#print y_pred[0]
print(" Prediction done in: %fs" % (time() - t1))
exit
# Tagging with CRF model
print(" Tagging file")
for line, tagLine in zip(lines, y_pred):
outputLine = ''
idx_tagLine = 0
line = line.strip('\n')
print("\nLine: " + str(line))
print ("CRF tagged line: " + str(tagLine))
for token in line.split():
listToken = token.split('|')
word = listToken[0]
lemma = listToken[1]
tag = listToken[2]
if options.filterStopWords:
if lemma in stopwords:
outputLine += token + ' '
continue
if options.filterSymbols:
if lemma in symbols:
if lemma == ',':
print("Coma , identificada")
outputLine += token + ' '
continue
CRFtag = tagLine[idx_tagLine]
#if (tag not in labels) and (CRFtag != 'O'):
# print "*** CRF change token {} to {}".format(token, CRFtag)
# outputLine += word + '|' + lemma + '|' + CRFtag + ' '
#else:
# outputLine += word + '|' + lemma + '|' + tag + ' '
#idx_tagLine += 1
sentencesOutputData.append(outputLine.rstrip())
with open(os.path.join(options.outputPath, file), "w") as oFile:
for line in sentencesOutputData:
oFile.write(line + '\n')
print("Processing corpus done in: %fs" % (time() - t0))