get-TRN-v2.py 27.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
# -*- coding: UTF-8 -*-
import operator
from optparse import OptionParser
import os
import sys
import json
import re
import pandas as pd

__author__ = 'CMendezC'


# Objective: generate TRN
# CFMC 2022-03-11: Agregamos:
#   1) Sección de oraciones de salida
#   2)

# Parameters:
#   1) --predictedPath Path for predicted interactions
#   2) --outputPath Output path
#   3) --outputFile Preffix file for saving TRN
#   4) --diccPath Dictionary path
#   5) --diccSynon File with synonyms of TFs
#   6) --tsvPath    Path to tsv file with section, id sentence, sentence. Extracted from jsonpdf
#   7) --jsonpdfPath    Path to read jsonpdf file to extract section name

# Ouput:
#   1) Tsv file detail with:
# TF	TypeRegulated	Regulated	Effect	PMID    IdSentence  TypeSentence    Sentence
#   Original_idsentence  Original_sentence  SectionNum SectionName  OrganismMentions    OrganismScore    ConfirmationLevel

#   1) Tsv file summary with:
# TF	TypeRegulated	Regulated	Effect	SentCount	Ver/Dev	Att	Auto	Score   RI (True/False)

# Execution:
# Version 2 TRN Salmonella
# python3.4 get-TRN-v2.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STMTRN_v2
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/original-toy/tsv
# --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/jsonpdf
# python3.4 get-TRN-v2.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STMTRN_v2 --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/original-toy/tsv --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/jsonpdf

# articulos_sal_4
# python3.4 get-TRN-v2.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-4/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-4/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STMTRN_articulos_sal_4
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_4/original/tsv
# --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_4/jsonpdf
# python3.4 get-TRN-v2.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-4/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-4/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STMTRN_articulos_sal_4 --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_4/original/tsv --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_4/jsonpdf

# articulos_sal_1
# python3.4 get-TRN-v2.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-1/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-1/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STMTRN_articulos_sal_1
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_1/original/tsv
# --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_1/jsonpdf
# python3.4 get-TRN-v2.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-1/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-1/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STMTRN_articulos_sal_1 --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_1/original/tsv --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_1/jsonpdf

# all = articulos_sal_1 + articulos_sal_2 + articulos_sal_3 + articulos_sal_4
# python3.4 get-TRN-v2.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-all/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-all/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STMTRN_all
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_all/original/tsv
# --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_all/jsonpdf
# python3.4 get-TRN-v2.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-all/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN-2021-all/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STMTRN_all --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json --tsvPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_all/original/tsv --jsonpdfPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/data-sets-STM/preprocessed-STMTRN-2021/articulos_sal_all/jsonpdf

####
# python3.4 get-TRN-v1.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STMTRN
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# python3.4 get-TRN-v1.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STMTRN/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STMTRN --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json

# Con dataset automatic-extraction-STM-RIs-dataset
# python3.4 get-TRN-v1.py
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STM-RIs-dataset/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STM-RIs-dataset/bries-bacterial-regulatory-interaction-extraction-system/trn
# --outputFile STM-RIs-dataset
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# python3.4 get-TRN-v1.py --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STM-RIs-dataset/bries-bacterial-regulatory-interaction-extraction-system/predicted-ris-gcs/complete-ris --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-STM-RIs-dataset/bries-bacterial-regulatory-interaction-extraction-system/trn --outputFile STM-RIs-dataset --diccPath /home/cmendezc/terminologicalResources --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json

###########################################################
#                       MAIN PROGRAM                      #
###########################################################

def updateHashPredicted(pr, hashP, pm, sF, ef):
    # updateHashPredicted(prief, hashPredictedRIEF, pmid, sentenceFile, hashOriginalEffect[effect])
    if pr not in hashP:
        hashTemp = {"pmids": {pm: [sF]}, "orieff": ef}
        hashP[pr] = hashTemp
    else:
        hashTemp = hashP[pr]
        if pm in hashTemp["pmids"]:
            hashP[pr]["pmids"][pm].append(sF)
        else:
            hashP[pr]["pmids"][pm] = [sF]

def get_standard_name(regSynon):
    reg = regSynon
    if regSynon in hashSynon:
        reg = hashSynon[regSynon]
    else:
        for syn, std in hashSynon.items():
            if regSynon.startswith(syn):
                reg = regSynon.replace(syn, std, 1)
                break
    return reg

if __name__ == "__main__":
    # Parameter definition
    parser = OptionParser()
    parser.add_option("--predictedPath", dest="predictedPath",
                      help="Path predicted ris gcs", metavar="PATH")
    parser.add_option("--outputPath", dest="outputPath",
                      help="Output path", metavar="PATH")
    parser.add_option("--outputFile", dest="outputFile",
                      help="Preffix file for saving results", metavar="FILE")
    parser.add_option("--diccPath", dest="diccPath",
                      help="Path to dictionary", metavar="PATH")
    parser.add_option("--diccSynon", dest="diccSynon",
                      help="File with synonyms", metavar="FILE")
    parser.add_option("--tsvPath", dest="tsvPath",
                      help="Path to tsv file with section, id sentence, sentence. Extracted from jsonpdf.", metavar="PATH")
    parser.add_option("--jsonpdfPath", dest="jsonpdfPath",
                        help="Path to read jsonpdf file to extract section name", metavar="PATH")

    (options, args) = parser.parse_args()
    if len(args) > 0:
        parser.error("None parameter entered.")
        sys.exit(1)

    # Printing parameter values
    print('-------------------------------- PARAMETERS --------------------------------')
    print("Path predicted ris gcs: " + str(options.predictedPath))
    print("Output path: " + str(options.outputPath))
    print("Preffix file for saving results: " + str(options.outputFile))
    print("Path to dictionary: " + str(options.diccPath))
    print("File with synonyms: " + str(options.diccSynon))
    print("Path to tsv file with section, id sentence, sentence (Extracted from jsonpdf): " + str(options.tsvPath))
    print("Path to read jsonpdf file to extract section name: " + str(options.jsonpdfPath))

    use_synonyms = False
    hashSynon = {}
    if options.diccPath != None and options.diccSynon != "no-synonyms":
        print("***** Using synonyms *****")
        use_synonyms = True
        print('Loading dictionary of synonyms...')
        with open(os.path.join(options.diccPath, options.diccSynon)) as diccSynon:
            hashSynon = json.load(diccSynon)
        print('Loading dictionary of synonyms {}... done!'.format(len(hashSynon)))

    hashPredictedRIs = {}
    hashPredictedRIsCount = {}
    hashPredictedRIsCountVer = {}
    hashPredictedRIsCountDev = {}
    hashPredictedRIsCountAtt = {}
    hashPredictedRIsCountAuto = {}
    hashFiles = {}
    for path, dirs, files in os.walk(options.predictedPath):
        for file in files:
            if file.endswith(".a1"):
                filename = file[:-3]
                if filename not in hashFiles:
                    hashFiles[filename] = 1
                else:
                    hashFiles[filename] += 1
    print("Files: {}".format(len(hashFiles)))

    processedFiles = 0
    id_ri = 1
    regex_att_auto = re.compile(r"(\.att\.|\.auto\.)[0-9]*$")
    for file in sorted(hashFiles.keys()):
        print("File: {}".format(file))
        type_sent = "ver/dev"
        if file.find("dataSet_OnlyRI_sentences") > -1:
            pmid = "000000"
            if file.find("dataSet_OnlyRI_sentences.") > -1:
                if file.find(".att.") > -1:
                    numsent = file[file.find("att.") + 4:]
                    type_sent = "att"
                if pmid.find(".auto.") > -1:
                    numsent = file[file.find("auto.") + 5:]
                    type_sent = "auto"
            else:
                numsent = file[file.find("_", file.find("_", file.find("_") + 1) + 1) + 1:file.find("-")]
            numsent = numsent.replace(".al", "")
            print("dataSet_OnlyRI_sentences numsent: {}".format(numsent))
            print("dataSet_OnlyRI_sentences pmid: {}".format(pmid))
        else:
            pmid = file[:file.find("_")]
            # print("pmid: {}".format(pmid))
            numsent = file[file.find("_")+1:file.find("-")]
            numsent = numsent.replace(".al", "")
            if pmid.find(".att.") > -1:
                # CFMC 2022-03-11: Fix errro in pmid
                # CFMC 2022-03-11 Original: pmid = pmid.replace(".att.", "")
                pmid = regex_att_auto.sub("", pmid)
                numsent = file[file.find("att.")+4:]
                type_sent = "att"
            if pmid.find(".auto.") > -1:
                # CFMC 2022-03-11: Fix errro in pmid
                # CFMC 2022-03-11 Original: pmid = pmid.replace(".auto.", "")
                pmid = regex_att_auto.sub("", pmid)
                numsent = file[file.find("auto.") + 5:]
                type_sent = "auto"
        # numsent = file[file.find("_"):file.find("-")]
        # print("pmid {}".format(pmid))
        # print("numsent: {}".format(numsent))

        sentenceFile = file[:file.find("-", file.find("_"))] + ".txt"
        hashEntitiesGenes = {}
        hashEntitiesTUs = {}
        hashEntitiesTFs = {}
        hashEntitiesEffects = {}
        hashOriginalEffect = {}
        regex_fix_regulator = re.compile(r'(Regulated|Binds|Bind|deverbal_effect|Regulate)')
        regex_fix_repressor = re.compile(r'(Repressing|Represses)')
        with open(os.path.join(options.predictedPath, file + ".a1"), mode="r") as a1File:
            for line in a1File:
                line = line.strip('\n')
                listLine1 = line.split('\t')
                listLine2 = listLine1[1].split(' ')
                entity = listLine2[0]
                entity_type = listLine2[0]
                idEntity = listLine1[0]
                originalEffect = listLine1[2]
                if entity.startswith("EFFECT"):
                    entity = entity[entity.find(".") + 1:]
                    # print("Entity: {}".format(entity))
                    if pmid.find("_dev") > -1:
                        type_sent = "dev"
                        entity = entity.replace("_dev", "")
                    # print("Entity without _dev: {}".format(entity))
                    if idEntity not in hashOriginalEffect:
                        hashOriginalEffect[idEntity] = originalEffect
                    if idEntity not in hashEntitiesEffects:
                        # We fixed some wrong effects in TRN, but we must fix this also in another script where error is produced
                        if regex_fix_regulator.match(entity):
                            print("WARNING EFFECT: {}".format(entity))
                            entity = regex_fix_regulator.sub("regulator", entity)
                            print("WARNING EFFECT after: {}".format(entity))
                        if regex_fix_repressor.match(entity):
                            print("WARNING EFFECT: {}".format(entity))
                            entity = regex_fix_repressor.sub("repressor", entity)
                            print("WARNING EFFECT after: {}".format(entity))
                        hashEntitiesEffects[idEntity] = entity
                else:
                    entity = listLine1[2]
                    if entity_type == "GENE":
                        if idEntity not in hashEntitiesGenes:
                            hashEntitiesGenes[idEntity] = entity
                    elif entity_type == "TU":
                        if idEntity not in hashEntitiesTUs:
                            hashEntitiesTUs[idEntity] = entity
                    elif entity_type == "TF":
                        if idEntity not in hashEntitiesTFs:
                            hashEntitiesTFs[idEntity] = entity

        # print("hashEntities: {}".format(hashEntitiesGenes))
        # print("hashEntities: {}".format(hashEntitiesTUs))
        # print("hashEntities: {}".format(hashEntitiesTFs))

        with open(os.path.join(options.predictedPath, file + ".a2"), mode="r") as a2File:
            sentence = ''
            with open(os.path.join(options.predictedPath, file + ".txt"), mode="r") as txtFile:
                sentence = txtFile.read()
                listTokens = [token.split('|')[0] for token in sentence.split()]
                sentence = ' '.join(listTokens)

            # CFMC 2022-03-11: We included section of sentences (num, name) and original idsentence and original sentence
            # Open jsonpdf file
            hash_sections = {}
            sentences = {}
            print('Loading jsonpdf file...')
            with open(os.path.join(options.jsonpdfPath, pmid + ".jsonpdf"), "r", encoding="utf-8", errors="replace") as jsonpdfFile:
                text_file = jsonpdfFile.read()
                if file.startswith("26781240"):
                    text_file = text_file.replace(" \\ ", " \\\\ ")
                elif file.startswith("26249345"):
                    text_file = text_file.replace('}], ', '}],"sections": {}')
                try:
                    hash_jsonpdf = json.loads(text_file)
                    print('   Loading jsponpdf file... done!')
                except Exception as e:
                    print(e)
                    print("   Loading jsonpdf file failed: {}".format(file))
                hash_sections = hash_jsonpdf["sections"]
                # print("Sections: {}".format(hash_sections))
                sentences = hash_jsonpdf["sentences"]
            # Open tsv file
            print('Loading tsv file...')
            file_tsv = pmid + ".pre.fil.tsv"
            tsv_file = pd.read_table(os.path.join(options.tsvPath, file_tsv))
            # print("tsv_file.shape: {}".format(tsv_file.shape))
            tsv_file_filtered = tsv_file[tsv_file['status'] == 1]
            # print("tsv_file_filtered.shape: {}".format(tsv_file_filtered.shape))
            tsv_file_new = tsv_file_filtered.reset_index(drop=True)
            # print(tsv_file_new.head(10))
            print('   Loading tsv file... done!')
            numsent_int = int(numsent)
            original_sentence = tsv_file_new.at[numsent_int, 'sentence']
            section_num = tsv_file_new.at[numsent_int, 'section']
            # print("type(section_num): {}".format(type(section_num)))
            original_idsentence = tsv_file_new.at[numsent_int, 'idsentence']
            section_num_str = str(section_num)
            if section_num_str in hash_sections:
                section_name = hash_sections[section_num_str]
            else:
                section_name = "Unknown"

            for line in a2File:
                # print("Line a2: {}".format(line))
                # R1	Interaction.T3 Target:T2 Agent:T1 Condition: T4
                line = line.strip('\n')
                listLine1 = line.split('\t')
                listLine2 = listLine1[1].split(' ')
                regulator = listLine2[2]
                regulator = regulator[regulator.find(":") + 1:]
                regulated = listLine2[1]
                regulated = regulated[regulated.find(":") + 1:]
                effect = listLine2[0]
                effect = effect[effect.find(".") + 1:]

                tf = hashEntitiesTFs[regulator]
                if tf.endswith("ed"):
                    tf = tf[:tf.find("-")]
                #else:
                # Clean TF names by expressions seen in TRN outpur file
                tf = re.sub(r"(/absence|controlle|activation|‐regulate|‐mediate|mediate|-regulate|regulate|ˉ|-like|-mutant|-type|-independent|-dependent|dependent|-dependant|-binding|-and|-family|-bound|-deficient|-indepen-dent|-inducing|-green|-overproducing|-or|-depletion|-repressible|-dual|-box)", "", tf)
                # Clean false TF names - 2329
                result = re.match(r"(cyclic|RHONDA|Crawford|Hulett|Rhodobacter|Danino|Huang|Neisseria|Huang|HUGHES1|Robbe-Saule|Danchin|Roberts|Furer|Hunter|Furue|Humphreys|Nacional)", tf)
                if result:
                    break
                # H
                tf = get_standard_name(tf)

                # print("numsent: {}".format(numsent))
                # For L&C do not increment 1
                # CFMC 2022-03-11 Original: numsent_int = int(numsent)

                if regulated in hashEntitiesGenes:
                    type_regulated = "Gene"
                    llave = "{}\t{}\t{}\t{}".format(tf, "gene", hashEntitiesGenes[regulated],
                                                    hashEntitiesEffects[effect])
                elif regulated in hashEntitiesTUs:
                    type_regulated ="TU"
                    llave = "{}\t{}\t{}\t{}".format(tf, "TU", hashEntitiesTUs[regulated],
                                                    hashEntitiesEffects[effect])
                else:
                    print("ERROR: Regulated did not found!")
                # Clean false cases
                if llave.startswith("Hu"):
                    break

                if llave in hashPredictedRIs:
                    # CFMC 2022-03-11: We included section of sentences (num, name) and original idsentence and original sentence
                    hashPredictedRIs[llave].append("{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}".format(pmid, numsent_int, type_sent, sentence, original_idsentence, original_sentence, section_num, section_name, "", 0, ""))
                    hashPredictedRIsCount[llave] += 1
                    if type_sent == "ver/dev":
                    #    if llave in hashPredictedRIsCountVer:
                        hashPredictedRIsCountVer[llave] += 1
                    #    else:
                    #        hashPredictedRIsCountVer[llave] = 1
                    elif type_sent == "dev":
                    #    if llave in hashPredictedRIsCountVer:
                        hashPredictedRIsCountDev[llave] += 1
                    #    else:
                    #        hashPredictedRIsCountDev[llave] = 1
                    elif type_sent == "att":
                    #    if llave in hashPredictedRIsCountVer:
                        hashPredictedRIsCountAtt[llave] += 1
                    #    else:
                    #        hashPredictedRIsCountAtt[llave] = 1
                    elif type_sent == "auto":
                    #    if llave in hashPredictedRIsCountVer:
                        hashPredictedRIsCountAuto[llave] += 1
                    #    else:
                    #        hashPredictedRIsCountAuto[llave] = 1
                else:
                    # CFMC 2022-03-11: We included section of sentences (num, name) and original idsentence and original sentence
                    hashPredictedRIs[llave] = ["{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}".format(pmid, numsent_int, type_sent, sentence, original_idsentence, original_sentence, section_num, section_name, "", 0, "")]
                    hashPredictedRIsCount[llave] = 1
                    hashPredictedRIsCountVer[llave] = 0
                    hashPredictedRIsCountDev[llave] = 0
                    hashPredictedRIsCountAtt[llave] = 0
                    hashPredictedRIsCountAuto[llave] = 0
                    if type_sent == "ver/dev":
                        hashPredictedRIsCountVer[llave] = 1
                    elif type_sent == "dev":
                        hashPredictedRIsCountDev[llave] = 1
                    elif type_sent == "att":
                        hashPredictedRIsCountAtt[llave] = 1
                    elif type_sent == "auto":
                        hashPredictedRIsCountAuto[llave] = 1

                id_ri += 1
        processedFiles += 1

    print("Processed files: {}".format(processedFiles))
    with open(os.path.join(options.outputPath, options.outputFile + ".summary.tsv"), mode="w") as oFile:
        # oFile.write("TF\tTypeRegulated\tRegulated\tEffect\tSentCount\tVer/Dev\tDev\tAtt\tAuto\tSentences\n")
        oFile.write("TF\tTypeRegulated\tRegulated\tEffect\tSentCount\tVer/Dev\tAtt\tAuto\tScore\tRI\n")
        for k,v in hashPredictedRIs.items():
            oFile.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(k, hashPredictedRIsCount[k], hashPredictedRIsCountVer[k],
                                                              hashPredictedRIsCountAtt[k], hashPredictedRIsCountAuto[k], "1", "True"))
            #oFile.write("{}\t{}\t{}\t{}\t{}\t{}\t{}\n".format(k, hashPredictedRIsCount[k], hashPredictedRIsCountVer[k], hashPredictedRIsCountDev[k], hashPredictedRIsCountAtt[k], hashPredictedRIsCountAuto[k], v))
    with open(os.path.join(options.outputPath, options.outputFile + ".detail.tsv"), mode="w") as oFile:
        # oFile.write("TF\tTypeRegulated\tRegulated\tEffect\tSentCount\tVer/Dev\tDev\tAtt\tAuto\tSentences\n")
        oFile.write("TF\tTypeRegulated\tRegulated\tEffect\tPMID\tNumSentence\tTypeSentence\tSentence\tOriginalIdSentence\tOriginalSentence\tSectionNum\tSectionName\tOrganisms\tOrganismScore\tConfirmationLevel\n")
        for k,v in hashPredictedRIs.items():
            for s in v:
                oFile.write("{}\t{}\n".format(k, s))