evaluate-ris-gcs-standoff-v04.py
28.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# -*- coding: UTF-8 -*-
import operator
from optparse import OptionParser
import os
import sys
import json
import re
__author__ = 'CMendezC'
# Objective: evaluate predicted interactions in standoff format
# versus true interactions in tab format
# v04: add synonyms of TFs
# Parameters:
# 1) --truePath Path for true interactions
# 2) --trueFile File for true interactions
# 3) --predictedPath Path for predicted interactions
# 4) --outputPath Output path
# 5) --outputFile File for saving results
# 6) --evaluateGCs Evaluate with GCs
# 7) --diccPath Dictionary path
# 8) --diccSynon File with synonyms of TFs
# Ouput:
# 1) File with TP, FP, FN and scores Precision, Recall , F1
# Execution:
# python3.4 evaluate-ris-gcs-standoff.py
# --truePath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/dataSets/analysis-validation-data-sets
# --trueFile ris-analysis-reference.txt
# --predictedPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/predicted-ris-gcs
# --outputPath /home/cmendezc/bitbucket_repositories/automatic-extraction-ris-gcs/rie-gce-system/automatic-extraction-ris-gcs/evaluation-reports
# --outputFile evaluation-riegce-system-ris-analysis.txt
# --diccPath /home/cmendezc/terminologicalResources
# --diccSynon diccionario-STM-LT2-v7.0.SYNONYMS.json
# --evaluateGCs
###########################################################
# MAIN PROGRAM #
###########################################################
def updateHashPredicted(pr, hashP, pm, sF, ef):
if pr not in hashP:
hashTemp = {"pmids": {pm: [sF]}, "orieff": ef}
hashP[pr] = hashTemp
else:
hashTemp = hashP[pr]
if pm in hashTemp["pmids"]:
hashP[pr]["pmids"][pm].append(sF)
else:
hashP[pr]["pmids"][pm] = [sF]
def getSummary(r, hashTemp):
pmids = 0
sentences = 0
orieff = ""
if r in hashTemp:
# print("r: {}".format(r))
orieff = hashTemp[r]["orieff"]
for pmid in hashTemp[r]["pmids"]:
pmids += 1
# print("PMID with sentences: {}".format(pmid))
for sent in hashTemp[r]["pmids"][pmid]:
sentences += 1
else:
return "WARNING: no data available!"
return "Artículos: {}\tFrases: {}\tOriginal effect: {}".format(pmids, sentences, orieff)
def getDetail(r, hashTemp):
return_text = ""
sentences = 0
aHash = {}
if r in hashTemp:
for pmid in hashTemp[r]["pmids"]:
for sent in hashTemp[r]["pmids"][pmid]:
sentences += 1
if pmid not in aHash:
aHash[pmid] = sentences
else:
return "WARNING: PMID duplicated!"
else:
return "WARNING: no data available!"
for p, s in sorted(aHash.items(), key=operator.itemgetter(1), reverse=True):
return_text += "\tPMID {}: {} frases\n".format(p, s)
return return_text
def get_standard_name(regSynon):
reg = ""
if regSynon in hashSynon:
reg = hashSynon[regSynon]
else:
for syn, std in hashSynon.items():
if regSynon.startswith(syn):
reg = regSynon.replace(syn, std, 1)
break
return reg
def isCorrect(ripr, listT, rtype):
# The predicted regulator starts with entity
# Effect and regulated coincide
# Regulator coincides with activator or repressor
# We return a flag to indicate type of matching: full
list_ripr = ripr.split('\t')
regulator = list_ripr[0]
regulatorStdName = ""
if use_synonyms:
regulatorStdName = get_standard_name(regulator)
for rit in listT:
# print("RI TRUE: {}".format(rit))
listRT = rit.split('\t')
regulatorT = listRT[0]
regexRegulatorStarts = re.compile(r'(' + regulatorT + r').+')
if rtype == "ri":
regulated = list_ripr[1]
regulatedT = listRT[1]
if (regulator == regulatorT or regulatorStdName == regulatorT) and regulated == regulatedT:
return (rit, 'Full')
# For cases where regulator is part of the word, such as ArgP-regulated
result = regexRegulatorStarts.match(regulator)
if result:
# print("Regulator predicted {} starts with regulator true {}".format(regulator, result.group(1)))
regulator = result.group(1)
if regulator == regulatorT and regulated == regulatedT:
return (rit, 'Start')
else:
if use_synonyms:
result = regexRegulatorStarts.match(regulatorStdName)
if result:
# print("Regulator predicted {} starts with regulator true {}".format(regulator, result.group(1)))
regulator = result.group(1)
if regulator == regulatorT and regulated == regulatedT:
return (rit, 'Start')
elif rtype == "rief":
effect = list_ripr[2]
regulated = list_ripr[1]
effectT = listRT[2]
regulatedT = listRT[1]
# if ripr == "ArgP\ttargets\tregulator":
# print("RI-PREDICT: ArgP\ttargets\tregulator")
# print(" PREDICT: regulator {} effect {} regulated {}".format(regulator, effect, regulated))
# print(" TRUE: regulator {} effect {} regulated {}".format(regulatorT, effectT, regulatedT))
if (
regulator == regulatorT or regulatorStdName == regulatorT) and effect == effectT and regulated == regulatedT:
return (rit, 'Full')
elif (
regulator == regulatorT or regulatorStdName == regulatorT) and regulated == regulatedT and effect == "regulator" and (
effectT == "activator" or effectT == "repressor"):
# if ripr == "ArgP\ttargets\tregulator":
# print(" Correct RI with regulator: {}".format(ripr))
# return rit CMC 20181014: creo que deberia ser la predicha porque pierdo en la slitas de salida si fue correcta o no
return (ripr, 'Regulator')
else:
# For cases where regulator is part of the word, such as ArgP-regulated
result = regexRegulatorStarts.match(regulator)
if result:
# print("Regulator predicted {} starts with regulator true {}".format(regulator, result.group(1)))
regulator = result.group(1)
if regulator == regulatorT and effect == effectT and regulated == regulatedT:
return (rit, 'Start')
elif regulator == regulatorT and regulated == regulatedT and effect == "regulator" and (
effectT == "activator" or effectT == "repressor"):
# if ripr == "ArgP\ttargets\tregulator":
# print(" Correct RI with regulator: {}".format(ripr))
# return rit CMC 20181014: creo que deberia ser la predicha porque pierdo en la slitas de salida si fue correcta o no
# solo que en este caso uso solo el regulador
# return rit
return (regulator + '\t' + regulated + '\t' + effect, 'Regulator')
else:
if use_synonyms:
result = regexRegulatorStarts.match(regulatorStdName)
if result:
if regulator == regulatorT and effect == effectT and regulated == regulatedT:
return (rit, 'Start')
elif regulator == regulatorT and regulated == regulatedT and effect == "regulator" and (
effectT == "activator" or effectT == "repressor"):
# if ripr == "ArgP\ttargets\tregulator":
# print(" Correct RI with regulator: {}".format(ripr))
# return rit CMC 20181014: creo que deberia ser la predicha porque pierdo en la slitas de salida si fue correcta o no
# solo que en este caso uso solo el regulador
# return rit
return (regulator + '\t' + regulated + '\t' + effect, 'Regulator')
# CMC 2018-10-14: Revisar riefgc porque no se ha actualizado
# elif rtype == "riefgc":
# effect = list_ripr[2]
# regulated = list_ripr[1]
# gc = list_ripr[3]
# effectT = listRT[2]
# regulatedT = listRT[1]
# gcT = listRT[3]
# if regulatorT == regulator and effect == effectT and regulated == regulatedT and gc == gcT:
# return rit
# elif regulatorT == regulator and effect == "regulator" and (effectT == "activator" or effectT == "repressor") and gc == gcT:
# return rit
# else:
# # For cases where regulator is part of the word, such as ArgP-regulated
# result = regexRegulatorStarts.match(regulator)
# if result:
# #print("Regulator predicted {} starts with regulator true {}".format(regulator, result.group(1)))
# regulator = result.group(1)
# if regulatorT == regulator and effect == effectT and regulated == regulatedT and gc == gcT:
# return rit
# elif regulatorT == regulator and effect == "regulator" and (effectT == "activator" or effectT == "repressor") and gc == gcT:
# return rit
return ('', '')
def get_scores_rules(listTrue, listPredicted, hashTemp, title, ri_type):
print("Evaluation")
# print(listPredicted)
# Precision = Extraídos correctos / Predichos
# Recall = Extraídos correctos / Referencia
# F - 1 = 2 * ((Precision * Recall) / (Precision + Recall))
correct = 0
incorrect = 0
# For registering correct and incorrect RIs
hashPredicted = {}
# To print output RIs
hashOutputRIs = {}
# For registering unrecovered RIs
hashUnrecovered = {}
predicted = len(listPredicted)
print("len(listPredicted): {}".format(predicted))
reference = len(listTrue)
# print("Reference: {}".format(reference))
listRecovered = []
for ri_pred in listPredicted:
print("ri_pred: {}".format(ri_pred))
# if ri_pred in hashPredicted:
# print("WARNING: RI predicted {} duplicated {}".format(ri_pred, hashPredicted[ri_pred]))
# else:
# First all predicted RIs are incorrect
# hashPredicted[ri_pred] = "incorrect"
# if ri_pred in listTrue:
# hashPredicted[ri_pred] = "correct"
# listRecovered.append(ri_pred)
# correct += 1
# continue
riTrue = ''
result = isCorrect(ri_pred, listTrue, ri_type)
riResult = result[0]
matchType = result[1]
if riResult != '':
if riResult not in hashOutputRIs:
hashOutputRIs[riResult] = "Correct"
if ri_pred not in hashPredicted:
hashPredicted[ri_pred] = "correct"
print("ri_pred {} correct".format(ri_pred))
correct += 1
# Complete matching or the predicted regulator starts with entity
if matchType == 'Full' or matchType == 'Start':
# ri_pred matches with ri_true
if riResult in listRecovered:
print("WARNING: riResult {} already in listRecovered".format(riResult))
else:
listRecovered.append(riResult)
else:
incorrect += 1
if riResult not in hashOutputRIs:
hashOutputRIs[riResult] = "Incorrect"
if ri_pred not in hashPredicted:
hashPredicted[ri_pred] = "incorrect"
print("ri_pred {} incorrect".format(ri_pred))
if len(hashPredicted) != predicted:
print("ERROR: number of predicted RIs mismatch")
# return
print("Predicted: {}".format(predicted))
print("len(hashPredicted): {}".format(len(hashPredicted)))
cor = 0
inc = 0
for r, v in hashPredicted.items():
if v == "correct":
cor += 1
elif v == "incorrect":
inc += 1
if cor != correct:
print("ERROR: number of correct RIs mismatch")
# return
if inc != incorrect:
print("ERROR: number of incorrect RIs mismatch")
# return
print("Correct: {}".format(correct))
print("Incorrect: {}".format(incorrect))
unrecovered = 0
recovered = 0 # Only when coincide with reference
# without considering Regulator correct when Activator or Repressor appears in reference
listRecovered2 = []
listUnrecovered = []
for ri in listTrue:
if ri not in listRecovered:
if ri in listUnrecovered:
print("WARNING: ri {} already in listUnrecovered".format(ri))
else:
listUnrecovered.append(ri)
unrecovered += 1
else:
if ri in listRecovered2:
print("WARNING: ri {} already in listRecovered2".format(ri))
else:
listRecovered2.append(ri)
recovered += 1
print("Len listRecovered: {}".format(len(listRecovered)))
print("Len listRecovered2: {}".format(len(listRecovered2)))
print("Len listUnrecovered: {}".format(len(listUnrecovered)))
# if (unrecovered + correct) != reference:
# print("ERROR: number of unrecovered {} + correct {} and reference {} RIs mismatch".format(unrecovered, correct, reference))
# return
print("{}".format(title))
print("Predicted: {}".format(predicted))
print("Reference: {}".format(reference))
print("Unrecovered: {}".format(unrecovered))
print("Recovered: {}".format(recovered))
precision = correct / predicted
print("Precision = correct / predicted: {}".format(precision))
# recall = correct / reference
# We calculate recall as recovery rate, because correct instances are calculates
# considering Regulator correct when Activator and Repressor appears in reference
recall = recovered / reference
print("Recall = recovered / reference: {}".format(recall))
f1 = 2 * ((precision * recall) / (precision + recall))
print("F1: {}".format(f1))
with open(os.path.join(options.outputPath, options.outputFile), mode="a", errors="replace") as oFile:
oFile.write("{}\n".format(title))
oFile.write("Predicted: {}\n".format(predicted))
oFile.write("Reference: {}\n".format(reference))
oFile.write("Correct: {}\n".format(correct))
oFile.write("Incorrect: {}\n".format(incorrect))
oFile.write("Unrecovered: {}\n".format(unrecovered))
oFile.write("Recovered: {}\n".format(recovered))
oFile.write("Precision = correct / predicted: {}\n".format(precision))
oFile.write("Recall = recovered / reference: {}\n".format(recall))
oFile.write("F1: {}\n".format(f1))
oFile.write("Unrecovered instances:\n")
for r in sorted(listUnrecovered):
oFile.write("\tUnrecovered: {}\n".format(r))
oFile.write("Recovered instances:\n")
for r in sorted(listRecovered):
oFile.write("\tRecovered: {}\n".format(r))
oFile.write("Incorrect instances:\n")
for r, v in sorted(hashPredicted.items()):
if v == "incorrect":
oFile.write("\tIncorrect: {}\n".format(r))
oFile.write("Correct instances:\n")
for r, v in sorted(hashPredicted.items()):
if v == "correct":
oFile.write("\tCorrect: {}\n".format(r))
# oFile.write("\t{}\t{}\n".format(r, getSummary(r, hashTemp)))
# oFile.write("\t{}\n".format(getDetail(r, hashTemp)))
def get_scores(listTrue, listPredicted, hashTemp, title):
# Precision = Extraídos correctos / Extraídos
# Recall = Extraídos correctos / Referencia
# F - 1 = 2 * ((Precision * Recall) / (Precision + Recall))
print("{}".format(title))
# print("listTrue: {}".format(listTrue))
# print("listPredicted: {}".format(listPredicted))
print("Predicted: {}".format(len(listPredicted)))
print("Reference: {}".format(len(listTrue)))
correct = set(listTrue) & set(listPredicted)
print("Correct: {} ({})".format(len(correct), len(correct) / len(listPredicted)))
incorrect = set(listPredicted) - set(listTrue)
print("Incorrect: {} ({})".format(len(incorrect), len(incorrect) / len(listPredicted)))
unrecovered = set(listTrue) - set(listPredicted)
print("Unrecovered: {} ()".format(len(unrecovered), len(unrecovered) / len(listTrue)))
precision = len(correct) / len(listPredicted)
print("Precision: {}".format(precision))
recall = len(correct) / len(listTrue)
print("Recall: {}".format(recall))
f1 = 2 * ((precision * recall) / (precision + recall))
print("F1: {}".format(f1))
with open(os.path.join(options.outputPath, options.outputFile), mode="a") as oFile:
oFile.write("{}\n".format(title))
oFile.write("Predicted: {}\n".format(len(listPredicted)))
oFile.write("Reference: {}\n".format(len(listTrue)))
oFile.write("Correct: {}\n".format(len(correct)))
oFile.write("Incorrect: {}\n".format(len(incorrect)))
oFile.write("Unrecovered: {}\n".format(len(unrecovered)))
oFile.write("Precision: {}\n".format(precision))
oFile.write("Recall: {}\n".format(recall))
oFile.write("F1: {}\n".format(f1))
oFile.write("Correct instances:\n")
for r in sorted(correct):
oFile.write("\t{}\t{}\n".format(r, getSummary(r, hashTemp)))
oFile.write("\t{}\n".format(getDetail(r, hashTemp)))
oFile.write("Incorrect instances:\n")
for r in sorted(incorrect):
oFile.write("\t{}\n".format(r))
oFile.write("Unrecovered instances:\n")
for r in sorted(unrecovered):
oFile.write("\t{}\n".format(r))
if __name__ == "__main__":
# Parameter definition
parser = OptionParser()
parser.add_option("--truePath", dest="truePath",
help="Path true ris gcs", metavar="PATH")
parser.add_option("--trueFile", dest="trueFile",
help="File true ris gcs", metavar="FILE")
parser.add_option("--predictedPath", dest="predictedPath",
help="Path predicted ris gcs", metavar="PATH")
parser.add_option("--outputPath", dest="outputPath",
help="Output path", metavar="PATH")
parser.add_option("--outputFile", dest="outputFile",
help="File for saving results", metavar="FILE")
parser.add_option("--evaluateGCs", default=False,
action="store_true", dest="evaluateGCs",
help="Evaluate GCs?")
parser.add_option("--diccPath", dest="diccPath",
help="Path to dictionary", metavar="PATH")
parser.add_option("--diccSynon", dest="diccSynon",
help="File with synonyms", metavar="FILE")
(options, args) = parser.parse_args()
if len(args) > 0:
parser.error("None parameter entered.")
sys.exit(1)
# Printing parameter values
print('-------------------------------- PARAMETERS --------------------------------')
print("Path true ris gcs: " + str(options.truePath))
print("File true ris gcs: " + str(options.trueFile))
print("Path predicted ris gcs: " + str(options.predictedPath))
print("Output path: " + str(options.outputPath))
print("File for saving results: " + str(options.outputFile))
print("Evaluate GCs: " + str(options.evaluateGCs))
print("Path to dictionary: " + str(options.diccPath))
print("File with synonyms: " + str(options.diccSynon))
use_synonyms = False
hashSynon = {}
if options.diccPath != None and options.diccSynon != "no-synonyms":
print("***** Using synonyms *****")
use_synonyms = True
print('Loading dictionary of synonyms...')
with open(os.path.join(options.diccPath, options.diccSynon)) as diccSynon:
hashSynon = json.load(diccSynon)
print('Loading dictionary of synonyms {}... done!'.format(len(hashSynon)))
listTrueRI = [] # Without effect nor gc
listTrueRIEF = [] # With effect nor gc
if options.evaluateGCs:
listTrueRIEFGC = [] # With effect and gc
# Read and process Reference
with open(os.path.join(options.truePath, options.trueFile), mode="r", encoding="utf-8") as iFile:
for line in iFile:
line = line.strip('\n')
if line.startswith("#"):
continue
listElem = line.split('\t')
if len(listElem) > 4:
regulator = listElem[2]
regulated = listElem[3]
effect = listElem[4]
if options.evaluateGCs:
gc = listElem[5]
else:
regulator = listElem[0]
regulated = listElem[1]
effect = listElem[2]
if options.evaluateGCs:
gc = listElem[3]
if effect == "binding":
effect = "regulator"
ri = "{}\t{}".format(regulator, regulated)
if ri not in listTrueRI:
listTrueRI.append(ri)
rief = "{}\t{}\t{}".format(regulator, regulated, effect)
if rief not in listTrueRIEF:
listTrueRIEF.append(rief)
if options.evaluateGCs:
riefgc = "{}\t{}\t{}\t{}".format(regulator, regulated, effect, gc)
if riefgc not in listTrueRIEFGC:
listTrueRIEFGC.append(riefgc)
print(" RIs en referencia antes regulators: {}".format(len(listTrueRI)))
print(" RIEFs en referencia antes regulators: {}".format(len(listTrueRIEF)))
if options.evaluateGCs:
print(" RIEFGCs en referencia antes regulators: {}".format(len(listTrueRIEFGC)))
# Eliminate those RIs with regulator which also have RIs with activator or repressor
listRITemp = []
for ri in listTrueRIEF:
listRI = ri.split('\t')
regulator = listRI[0]
regulated = listRI[1]
effect = listRI[2]
if effect == "regulator":
tempRIA = "{}\t{}\t{}".format(regulator, regulated, "activator")
tempRIR = "{}\t{}\t{}".format(regulator, regulated, "repressor")
if tempRIA in listTrueRIEF or tempRIR in listTrueRIEF:
pass
# print("RI regulator matchs RI activator/repressor: {}".format(ri))
# listTrueRIEF.remove(ri)
else:
# print("Len before: {}".format(len(listRITemp)))
listRITemp.append(ri)
# print("Len after: {}".format(len(listRITemp)))
else:
listRITemp.append(ri)
listTrueRIEF = listRITemp
print(" RIEFs en referencia después regulators: {}".format(len(listTrueRIEF)))
if options.evaluateGCs:
for ri in listTrueRIEFGC:
listRI = ri.split('\t')
regulator = listRI[0]
regulated = listRI[1]
effect = listRI[2]
gc = listRI[3]
if effect == "regulator":
tempRIGCA = "{}\t{}\t{}\t{}".format(regulator, regulated, "activator", gc)
tempRIGCR = "{}\t{}\t{}\t{}".format(regulator, regulated, "repressor", gc)
if tempRIGCA in listTrueRIEFGC or tempRIGCR in listTrueRIEFGC:
listTrueRIEFGC.remove(ri)
print(" RIEFGCs en referencia después regulators: {}".format(len(listTrueRIEFGC)))
listPredictedRI = []
hashPredictedRI = {}
listPredictedRIEF = []
hashPredictedRIEF = {}
if options.evaluateGCs:
listPredictedRIEFGC = []
hashPredictedRIEFGC = {}
hashFiles = {}
for path, dirs, files in os.walk(options.predictedPath):
for file in files:
if file.endswith(".a1"):
filename = file[:-3]
if filename not in hashFiles:
hashFiles[filename] = 1
else:
hashFiles[filename] += 1
print("Files: {}".format(len(hashFiles)))
hashEntities = {}
processedFiles = 0
for file in sorted(hashFiles.keys()):
print("File: {}".format(file))
pmid = file[:file.find("_")]
# print("pmid {}".format(pmid))
sentenceFile = file[:file.find("-", file.find("_"))] + ".txt"
hashEntities = {}
hashOriginalEffect = {}
with open(os.path.join(options.predictedPath, file + ".a1"), mode="r") as a1File:
for line in a1File:
line = line.strip('\n')
listLine1 = line.split('\t')
listLine2 = listLine1[1].split(' ')
entity = listLine2[0]
idEntity = listLine1[0]
originalEffect = listLine1[2]
if entity.startswith("EFFECT"):
entity = entity[entity.find(".") + 1:]
print("Entity: {}".format(entity))
entity = entity.replace("_dev", "")
print("Entity without _dev: {}".format(entity))
if idEntity not in hashOriginalEffect:
hashOriginalEffect[idEntity] = originalEffect
else:
entity = listLine1[2]
if idEntity not in hashEntities:
hashEntities[idEntity] = entity
print("hashEntities: {}".format(hashEntities))
with open(os.path.join(options.predictedPath, file + ".a2"), mode="r") as a2File:
for line in a2File:
# print("Line a2: {}".format(line))
# R1 Interaction.T3 Target:T2 Agent:T1 Condition: T4
line = line.strip('\n')
listLine1 = line.split('\t')
listLine2 = listLine1[1].split(' ')
regulator = listLine2[2]
regulator = regulator[regulator.find(":") + 1:]
regulated = listLine2[1]
regulated = regulated[regulated.find(":") + 1:]
effect = listLine2[0]
effect = effect[effect.find(".") + 1:]
# print("effect: {}".format(hashEntities[effect]))
# if hashEntities[effect] == "binding":
# continue
if options.evaluateGCs:
gc = listLine2[3]
gc = gc[gc.find(":") + 1:]
pri = "{}\t{}".format(hashEntities[regulator], hashEntities[regulated])
if pri not in listPredictedRI:
listPredictedRI.append(pri)
updateHashPredicted(pri, hashPredictedRI, pmid, sentenceFile, None)
prief = "{}\t{}\t{}".format(hashEntities[regulator], hashEntities[regulated], hashEntities[effect])
print("prief: {}".format(prief))
if prief not in listPredictedRIEF:
listPredictedRIEF.append(prief)
updateHashPredicted(prief, hashPredictedRIEF, pmid, sentenceFile, hashOriginalEffect[effect])
if options.evaluateGCs:
priefgc = "{}\t{}\t{}\t{}".format(hashEntities[regulator], hashEntities[regulated],
hashEntities[effect], hashEntities[gc])
if priefgc not in listPredictedRIEFGC:
listPredictedRIEFGC.append(priefgc)
updateHashPredicted(priefgc, hashPredictedRIEFGC, pmid, sentenceFile, hashOriginalEffect[effect])
processedFiles += 1
print("Processed files: {}".format(processedFiles))
with open(os.path.join(options.outputPath, options.outputFile), mode="w") as oFile:
pass
get_scores_rules(listTrueRIEF, listPredictedRIEF, hashPredictedRIEF,
"Scores regulator-regulated-effect (without gc)", "rief")
get_scores_rules(listTrueRI, listPredictedRI, hashPredictedRI, "Scores regulator-regulated (without effect nor gc)",
"ri")
if options.evaluateGCs:
get_scores_rules(listTrueRIEFGC, listPredictedRIEFGC, hashPredictedRIEFGC,
"Scores regulator-regulated-effect-gc", "riefgc")