Estefani Gaytan Nunez

upload

......@@ -94,7 +94,10 @@ if __name__ == '__main__':
plt.plot(scoresTable['CV'], 'o--', label='CV' , linewidth=3, markersize=15)
plt.legend(loc='lower right')
#plt.xticks(range(16),['run1', 'run2', 'run3', 'run4', 'run5', 'run6', 'run7', 'run1-NER(9)', 'run2-NER(10)', 'run3-NER(11)', 'run4-NER(12)', 'run5-NER(13)', 'run6-NER(14)', 'run7-NER(15)', 'run8-NER(16)'], rotation=90)
plt.xticks(range(64),['run1', 'run2', 'run3', 'run4', 'run5', 'run6', 'run7', 'run8',
plt.xticks(range(64),['run1_v10', 'run2_v10', 'run3_v10', 'run4_v10', 'run5_v10', 'run6_v10', 'run7_v10', 'run8_v10',
'run1_v11', 'run2_v11', 'run3_v11', 'run4_v11', 'run5_v11', 'run6_v11', 'run7_v11', 'run8_v11',
'run1_v12', 'run2_v12', 'run3_v12', 'run4_v12', 'run5_v12', 'run6_v12', 'run7_v12', 'run8_v12',
'run1_v13', 'run2_v13', 'run3_v13', 'run4_v13', 'run5_v13', 'run6_v13', 'run7_v13', 'run8_v13',
'run9_v10', 'run10_v10', 'run11_v10', 'run12_v10', 'run13_v10', 'run14_v10', 'run15_v10', 'run16_v10',
'run9_v11', 'run10_v11', 'run11_v11', 'run12_v11', 'run13_v11', 'run14_v11', 'run15_v11', 'run16_v11',
'run9_v12', 'run10_v12', 'run11_v12', 'run12_v12', 'run13_v12', 'run14_v12', 'run15_v12', 'run16_v12',
......
Run10_v10 Run10_v11 Run10_v12 Run10_v13 Run11_v10 Run11_v11 Run11_v12 Run11_v13 Run12_v10 Run12_v11 Run12_v12 Run12_v13 Run13_v10 Run13_v11 Run13_v12 Run13_v13 Run14_v10 Run14_v11 Run14_v12 Run14_v13 Run15_v10 Run15_v11 Run15_v12 Run15_v13 Run16_v10 Run16_v11 Run16_v12 Run16_v13 Run1_v10. Run1_v11. Run1_v12. Run1_v13. Run2_v10. Run2_v11. Run2_v12. Run2_v13. Run3_v10. Run3_v11. Run3_v12. Run3_v13. Run4_v10. Run4_v11. Run4_v12. Run4_v13. Run5_v10. Run5_v11. Run5_v12. Run5_v13. Run6_v10. Run6_v11. Run6_v12. Run6_v13. Run7_v10. Run7_v11. Run7_v12. Run7_v13. Run8_v10. Run8_v11. Run8_v12. Run8_v13. Run9_v10. Run9_v11. Run9_v12. Run9_v13.
CV 0.8426343854107191 0.8375337951545059 0.8344412009392327 0.8342433957330186 0.8106324641347842 0.8200149039218473 0.8256738268677035 0.8222652765189232 0.8369330476694216 0.8324548394172087 0.8305332917162109 0.8269983740799899 0.8308032444965605 0.8337888246126737 0.8317218364725953 0.8295597513348965 0.8497587132907273 0.8514572032055473 0.8529397672009222 0.8530997523170145 0.8354648872990671 0.8438553480543364 0.833488403887471 0.8384402744923658 0.8504521104958047 0.856091701330711 0.8544270978232358 0.8512984764913196 0.818911081696952 0.8117042290979286 0.8211582395746769 0.8166537086281624 0.8263737544180966 0.8265144607685903 0.8266267801413506 0.8209562028933415 0.8153229850631285 0.8170382812294825 0.8214198138509978 0.8200873889763314 0.8200306160186037 0.8201549270256682 0.8172882049457899 0.8192294924716081 0.8315569437055503 0.826756700790382 0.823974602152804 0.830775030715119 0.8514396351676051 0.8443013668504182 0.8434032566660784 0.8577895989909314 0.8376625935961355 0.8381889879918965 0.8349604346257782 0.836408383376389 0.841060076118789 0.843848676674025 0.8426311049791738 0.8433941367984498 0.8189566663670631 0.8186349956286322 0.8193729864282642 0.8163619170548052
f1-score 0.805 0.809 0.804 0.811 0.816 0.802 0.812 0.808 0.816 0.814 0.810 0.804 0.815 0.815 0.817 0.817 0.821 0.820 0.818 0.815 0.817 0.823 0.817 0.814 0.818 0.813 0.823 0.820 0.807 0.801 0.812 0.806 0.804 0.811 0.804 0.806 0.832 0.815 0.808 0.813 0.809 0.801 0.804 0.801 0.814 0.818 0.815 0.817 0.813 0.816 0.815 0.814 0.815 0.813 0.811 0.821 0.816 0.818 0.818 0.823 0.812 0.799 0.807 0.803
precision 0.911 0.853 0.908 0.856 0.922 0.907 0.916 0.852 0.919 0.855 0.912 0.910 0.919 0.915 0.854 0.854 0.864 0.857 0.856 0.922 0.857 0.863 0.857 0.849 0.858 0.905 0.859 0.859 0.850 0.905 0.849 0.848 0.906 0.852 0.906 0.907 0.875 0.906 0.838 0.898 0.855 0.907 0.846 0.907 0.859 0.860 0.856 0.859 0.925 0.857 0.919 0.861 0.850 0.909 0.908 0.860 0.857 0.914 0.858 0.862 0.843 0.827 0.850 0.839
recall 0.746 0.777 0.746 0.781 0.760 0.742 0.750 0.773 0.752 0.783 0.752 0.742 0.754 0.758 0.787 0.787 0.789 0.789 0.787 0.752 0.785 0.791 0.785 0.785 0.785 0.756 0.793 0.789 0.773 0.742 0.781 0.773 0.746 0.779 0.746 0.748 0.802 0.767 0.785 0.764 0.773 0.740 0.771 0.740 0.779 0.785 0.783 0.783 0.750 0.783 0.754 0.777 0.787 0.758 0.756 0.789 0.783 0.760 0.785 0.791 0.787 0.779 0.773 0.773
Run1 Run10 Run11 Run12 Run13 Run14 Run15 Run16 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9
CV 0.8166537086281624 0.8426343854107191 0.8200149039218473 0.8369330476694216 0.8308032444965605 0.8497587132907273 0.8354648872990671 0.856091701330711 0.8209562028933415 0.8200873889763314 0.8172882049457899 0.830775030715119 0.8434032566660784 0.836408383376389 0.843848676674025 0.8189566663670631
f1-score 0.806 0.805 0.802 0.816 0.815 0.821 0.817 0.813 0.806 0.813 0.804 0.817 0.815 0.821 0.818 0.812
precision 0.848 0.911 0.907 0.919 0.919 0.864 0.857 0.905 0.907 0.898 0.846 0.859 0.919 0.860 0.914 0.843
recall 0.773 0.746 0.742 0.752 0.754 0.789 0.785 0.756 0.748 0.764 0.771 0.783 0.754 0.789 0.760 0.787
Run10_v10 Run10_v11 Run10_v12 Run10_v13 Run11_v10 Run11_v11 Run11_v12 Run11_v13 Run12_v10 Run12_v11 Run12_v12 Run12_v13 Run13_v10 Run13_v11 Run13_v12 Run13_v13 Run14_v10 Run14_v11 Run14_v12 Run14_v13 Run15_v10 Run15_v11 Run15_v12 Run15_v13 Run16_v10 Run16_v11 Run16_v12 Run16_v13 Run1_v10. Run1_v11. Run1_v12. Run1_v13. Run2_v10. Run2_v11. Run2_v12. Run2_v13. Run3_v10. Run3_v11. Run3_v12. Run3_v13. Run4_v10. Run4_v11. Run4_v12. Run4_v13. Run5_v10. Run5_v11. Run5_v12. Run5_v13. Run6_v10. Run6_v11. Run6_v12. Run6_v13. Run7_v10. Run7_v11. Run7_v12. Run7_v13. Run8_v10. Run8_v11. Run8_v12. Run8_v13. Run9_v10. Run9_v11. Run9_v12. Run9_v13.
CV 0.8426343854107191 0.8375337951545059 0.8344412009392327 0.8342433957330186 0.8106324641347842 0.8200149039218473 0.8256738268677035 0.8222652765189232 0.8369330476694216 0.8324548394172087 0.8305332917162109 0.8269983740799899 0.8308032444965605 0.8337888246126737 0.8317218364725953 0.8295597513348965 0.8497587132907273 0.8514572032055473 0.8529397672009222 0.8530997523170145 0.8354648872990671 0.8438553480543364 0.833488403887471 0.8384402744923658 0.8504521104958047 0.856091701330711 0.8544270978232358 0.8512984764913196 0.818911081696952 0.8117042290979286 0.8211582395746769 0.8166537086281624 0.8263737544180966 0.8265144607685903 0.8266267801413506 0.8209562028933415 0.8153229850631285 0.8170382812294825 0.8214198138509978 0.8200873889763314 0.8200306160186037 0.8201549270256682 0.8172882049457899 0.8192294924716081 0.8315569437055503 0.826756700790382 0.823974602152804 0.830775030715119 0.8514396351676051 0.8443013668504182 0.8434032566660784 0.8577895989909314 0.8376625935961355 0.8381889879918965 0.8349604346257782 0.836408383376389 0.841060076118789 0.843848676674025 0.8426311049791738 0.8433941367984498 0.8189566663670631 0.8186349956286322 0.8193729864282642 0.8163619170548052
f1-score 0.805 0.809 0.804 0.811 0.816 0.802 0.812 0.808 0.816 0.814 0.810 0.804 0.815 0.815 0.817 0.817 0.821 0.820 0.818 0.815 0.817 0.823 0.817 0.814 0.818 0.813 0.823 0.820 0.807 0.801 0.812 0.806 0.804 0.811 0.804 0.806 0.832 0.815 0.808 0.813 0.809 0.801 0.804 0.801 0.814 0.818 0.815 0.817 0.813 0.816 0.815 0.814 0.815 0.813 0.811 0.821 0.816 0.818 0.818 0.823 0.812 0.799 0.807 0.803
precision 0.911 0.853 0.908 0.856 0.922 0.907 0.916 0.852 0.919 0.855 0.912 0.910 0.919 0.915 0.854 0.854 0.864 0.857 0.856 0.922 0.857 0.863 0.857 0.849 0.858 0.905 0.859 0.859 0.850 0.905 0.849 0.848 0.906 0.852 0.906 0.907 0.875 0.906 0.838 0.898 0.855 0.907 0.846 0.907 0.859 0.860 0.856 0.859 0.925 0.857 0.919 0.861 0.850 0.909 0.908 0.860 0.857 0.914 0.858 0.862 0.843 0.827 0.850 0.839
recall 0.746 0.777 0.746 0.781 0.760 0.742 0.750 0.773 0.752 0.783 0.752 0.742 0.754 0.758 0.787 0.787 0.789 0.789 0.787 0.752 0.785 0.791 0.785 0.785 0.785 0.756 0.793 0.789 0.773 0.742 0.781 0.773 0.746 0.779 0.746 0.748 0.802 0.767 0.785 0.764 0.773 0.740 0.771 0.740 0.779 0.785 0.783 0.783 0.750 0.783 0.754 0.777 0.787 0.758 0.756 0.789 0.783 0.760 0.785 0.791 0.787 0.779 0.773 0.773
......

140 KB | W: | H:

198 KB | W: | H:

  • 2-up
  • Swipe
  • Onion skin