Run7_v2.txt 29.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: False True
Report file: _v2
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003552s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0      1
0       lemma      1
1      postag     CD
2    -1:lemma     pq
3   -1:postag     NN
4        word      1
5     isUpper  False
6     isLower  False
7     isGreek  False
8    isNumber   True
9     -1:word     PQ
10   -2:lemma  δsoxs
11  -2:postag     NN
--------------------------- FeaturesTest -----------------------------
            0          1
0       lemma  delta-fnr
1      postag         NN
2    -1:lemma          _
3   -1:postag         NN
4    +1:lemma          _
5   +1:postag         CD
6        word  delta-fnr
7     isUpper      False
8     isLower       True
9     isGreek      False
10   isNumber      False
11    -1:word          _
12    +1:word          _
13   -2:lemma    affyexp
14  -2:postag         JJ
15   +2:lemma    glucose
16  +2:postag         NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.930099 -   1.6s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.909545 -   1.9s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.636866 -   1.5s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.766937 -   1.6s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.619815 -   1.4s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.751476 -   1.6s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.724597 -   1.5s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.788344 -   1.6s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.850760 -   1.6s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.930099 -   1.6s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.614273 -   1.2s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.630631 -   1.3s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.893154 -   1.7s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.906170 -   1.6s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.849859 -   1.5s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.711614 -   1.6s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.711518 -   1.6s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.930099 -   1.7s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.686192 -   1.4s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.856270 -   1.5s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.874769 -   1.7s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.812021 -   1.6s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.845019 -   1.6s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.765174 -   1.6s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.740712 -   1.5s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.844591 -   1.5s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.656309 -   1.6s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.734369 -   1.8s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.660529 -   1.7s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.697156 -   1.5s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.622141 -   1.2s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.767031 -   1.7s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.866790 -   1.8s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.846366 -   1.5s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.899125 -   1.5s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.750130 -   1.5s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.742502 -   1.5s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.759711 -   1.7s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.925309 -   1.6s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.771474 -   1.7s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.660529 -   1.5s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.675493 -   1.3s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.624751 -   1.4s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.883871 -   1.8s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.810990 -   1.3s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.727141 -   1.8s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.862223 -   1.5s
[CV] c1=0.038297678976678046, c2=0.1916126137406044 ..................
[CV]  c1=0.038297678976678046, c2=0.1916126137406044, score=0.895358 -   1.8s
[CV] c1=0.22369184983412724, c2=0.0039152206686826506 ................
[CV]  c1=0.22369184983412724, c2=0.0039152206686826506, score=0.791491 -   1.8s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.636866 -   1.5s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.765174 -   1.6s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.737002 -   1.5s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.760794 -   1.6s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.677691 -   1.5s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.906100 -   1.5s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.860074 -   1.5s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.677691 -   1.7s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.883871 -   1.7s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.846366 -   1.3s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.766937 -   1.6s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.690019 -   1.3s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.883871 -   1.6s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.664382 -   1.4s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.774627 -   1.5s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.879541 -   1.6s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.943287 -   1.7s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.783286 -   1.6s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.846366 -   1.7s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.695227 -   1.3s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.743170 -   1.5s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.693874 -   1.6s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.863221 -   1.7s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.769218 -   1.6s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.878755 -   1.6s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.737812 -   1.4s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.868659 -   1.8s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.742545 -   1.7s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.879541 -   1.7s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.791976 -   1.7s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.636866 -   1.4s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.909545 -   1.5s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.879280 -   1.7s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.761026 -   1.8s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.879541 -   1.6s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.832898 -   1.5s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.792472 -   1.7s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.892392 -   1.8s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.640002 -   1.5s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.900725 -   1.6s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.654103 -   1.4s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.883871 -   1.6s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.870647 -   1.5s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.660529 -   1.8s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.804911 -   1.5s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.660149 -   1.3s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.747948 -   1.6s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.809792 -   1.7s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.709002 -   1.6s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.636866 -   1.3s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.896702 -   1.6s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.860074 -   1.6s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.879541 -   1.8s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.851866 -   1.3s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.732991 -   1.4s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.832898 -   1.6s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.846366 -   1.6s
[CV] c1=0.5210224789278901, c2=0.006751538594354206 ..................
[CV]  c1=0.5210224789278901, c2=0.006751538594354206, score=0.925309 -   1.5s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.906100 -   1.7s
[CV] c1=0.34336652460986966, c2=0.023606219975479584 .................
[CV]  c1=0.34336652460986966, c2=0.023606219975479584, score=0.922694 -   1.5s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.665525 -   1.4s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.677691 -   1.5s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.846366 -   1.7s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.888371 -   1.5s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.665357 -   1.1s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.883871 -   1.9s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.624992 -   1.4s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.690019 -   1.3s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.786380 -   1.6s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.879541 -   1.5s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.873237 -   1.8s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.770832 -   1.6s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.670401 -   1.6s
[CV] c1=0.22991065454519655, c2=0.05704963083080379 ..................
[CV]  c1=0.22991065454519655, c2=0.05704963083080379, score=0.930099 -   1.8s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.767759 -   1.3s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.757767 -   1.6s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.757767 -   1.8s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.656799 -   1.5s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.606304 -   1.4s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.769218 -   1.4s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.832898 -   1.5s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.908780 -   1.6s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.900725 -   1.7s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.710927 -   1.6s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.930099 -   1.3s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.767759 -   1.7s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.846366 -   1.6s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.765174 -   1.6s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.840999 -   1.6s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.832898 -   1.4s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.660529 -   1.5s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.900725 -   1.7s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.760794 -   1.6s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.735050 -   1.5s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.857128 -   1.5s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.930099 -   1.6s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.930099 -   1.7s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.922694 -   1.7s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.660529 -   1.5s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.739341 -   1.3s
[CV] c1=0.16521043789445478, c2=0.12734995352729425 ..................
[CV]  c1=0.16521043789445478, c2=0.12734995352729425, score=0.769218 -   1.6s
[CV] c1=0.08911978010699523, c2=0.0017540149814192383 ................
[CV]  c1=0.08911978010699523, c2=0.0017540149814192383, score=0.922694 -   1.6s
[CV] c1=0.23396239601478247, c2=0.021554630281339932 .................
[CV]  c1=0.23396239601478247, c2=0.021554630281339932, score=0.766937 -   1.8s
[CV] c1=1.1131285560759827, c2=0.0789492952007081 ....................
[CV]  c1=1.1131285560759827, c2=0.0789492952007081, score=0.843338 -   1.6s
[CV] c1=0.13789575918935962, c2=0.21129423093936495 ..................
[CV]  c1=0.13789575918935962, c2=0.21129423093936495, score=0.896702 -   1.6s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.861675 -   1.7s
[CV] c1=0.19372696796129896, c2=0.018101673564889433 .................
[CV]  c1=0.19372696796129896, c2=0.018101673564889433, score=0.804911 -   1.8s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.746808 -   1.6s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.860074 -   1.6s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.677691 -   1.3s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.846366 -   1.6s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.797094 -   1.7s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.872550 -   1.6s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.930099 -   1.7s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.631503 -   1.0s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.732991 -   1.9s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.742545 -   1.7s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.697646 -   1.6s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.788778 -   1.8s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.783286 -   1.3s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.771474 -   1.6s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.870647 -   1.6s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.862223 -   1.7s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.765174 -   1.5s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.878755 -   1.4s
[CV] c1=0.17002935344175654, c2=0.03048089985747861 ..................
[CV]  c1=0.17002935344175654, c2=0.03048089985747861, score=0.883883 -   1.6s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.903665 -   1.7s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.715035 -   1.7s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.771474 -   1.5s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.891002 -   1.4s
[CV] c1=0.7316013853643798, c2=0.25017196058094404 ...................
[CV]  c1=0.7316013853643798, c2=0.25017196058094404, score=0.613639 -   1.3s
[CV] c1=0.7934403590252077, c2=0.010140047052715413 ..................
[CV]  c1=0.7934403590252077, c2=0.010140047052715413, score=0.664382 -   1.4s
[CV] c1=1.2484765854262996, c2=0.03066474574094165 ...................
[CV]  c1=1.2484765854262996, c2=0.03066474574094165, score=0.709002 -   1.6s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.568876 -   1.3s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.883871 -   1.9s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.906931 -   1.2s
[CV] c1=0.14528662487494648, c2=0.20027010511973786 ..................
[CV]  c1=0.14528662487494648, c2=0.20027010511973786, score=0.879541 -   1.9s
[CV] c1=0.4722267453140106, c2=0.001685255428968536 ..................
[CV]  c1=0.4722267453140106, c2=0.001685255428968536, score=0.871207 -   1.7s
[CV] c1=1.4620038736037526, c2=0.04868337460924114 ...................
[CV]  c1=1.4620038736037526, c2=0.04868337460924114, score=0.803851 -   1.8s
[CV] c1=0.14069682863299926, c2=0.024714016482769777 .................
[CV]  c1=0.14069682863299926, c2=0.024714016482769777, score=0.697441 -   1.3s
[CV] c1=0.4862974700385636, c2=0.028075320941336974 ..................
[CV]  c1=0.4862974700385636, c2=0.028075320941336974, score=0.871207 -   1.4s
Training done in: 10.702919s
     Saving training model...
        Saving training model done in: 0.013511s
*********************************
Prediction done in: 0.037534s