Run4_v1.txt 29.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True True
Report file: _v9
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003836s
{'lemma': 'δsoxs', 'postag': 'NN', '+1:lemma': 'pq', '+1:postag': 'NN'}
{'lemma': 'affyexp', 'postag': 'JJ', '+1:lemma': '_', '+1:postag': 'NN'}
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.567237 -   0.9s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.852821 -   1.1s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.654823 -   1.0s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.921915 -   1.2s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.899703 -   1.2s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.920970 -   1.4s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.720311 -   1.3s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.675506 -   1.3s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.570419 -   1.0s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.723593 -   0.8s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.710539 -   1.2s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.867500 -   1.1s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.701323 -   1.2s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.858883 -   1.2s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.848230 -   0.7s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.753693 -   1.2s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.766835 -   1.0s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.624832 -   1.2s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.679766 -   1.3s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.802426 -   0.9s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.919762 -   1.1s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.887557 -   1.1s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.640353 -   1.1s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.848001 -   1.2s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.774739 -   0.9s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.656490 -   1.1s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.920970 -   1.2s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.691890 -   1.3s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.864316 -   1.2s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.717157 -   0.8s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.761818 -   1.1s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.848001 -   1.2s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.853988 -   1.2s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.920970 -   1.2s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.763058 -   0.9s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.643807 -   1.2s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.715300 -   1.1s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.632407 -   1.0s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.867500 -   1.1s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.852821 -   1.1s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.556973 -   1.0s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.731639 -   1.3s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.557241 -   1.0s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.737308 -   1.3s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.935386 -   1.1s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.852821 -   1.1s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.753693 -   1.1s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.606581 -   1.0s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.887557 -   1.0s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.753693 -   1.2s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.848001 -   1.2s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.761418 -   1.0s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.637423 -   1.0s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.899703 -   1.2s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.834063 -   1.2s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.727061 -   1.1s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.899703 -   1.2s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.688946 -   1.1s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.775757 -   1.1s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.699610 -   1.4s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.720311 -   1.2s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.674776 -   1.2s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.679766 -   1.0s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.548511 -   0.8s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.641007 -   1.0s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.682397 -   1.0s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.721334 -   1.0s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.586573 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.687750 -   0.9s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.899703 -   1.1s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.826869 -   1.2s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.660012 -   1.1s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.870586 -   1.2s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.654823 -   1.2s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.569039 -   0.7s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.807016 -   1.3s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.906853 -   1.2s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.678288 -   1.3s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.766835 -   1.2s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.674776 -   1.0s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.782641 -   1.0s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.656490 -   1.1s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.686713 -   1.1s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.896193 -   1.2s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.715320 -   1.4s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.860729 -   1.3s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.573749 -   1.1s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.698982 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.905489 -   0.9s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.599785 -   0.8s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.654823 -   1.0s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.875991 -   1.2s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.815463 -   1.0s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.710539 -   1.1s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.553828 -   0.5s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.625815 -   1.1s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.860536 -   1.2s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.920970 -   1.2s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.659056 -   1.2s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.659253 -   1.1s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.705332 -   1.1s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.606859 -   1.0s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.793956 -   1.2s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.787287 -   1.3s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.906853 -   1.1s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.703150 -   1.1s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.761418 -   1.2s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.905489 -   1.2s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.605840 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.761818 -   1.1s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.812195 -   1.1s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.660012 -   1.1s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.551686 -   1.0s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.784955 -   1.2s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.607039 -   1.1s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.919762 -   1.2s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.730124 -   1.3s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.761818 -   1.3s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.843581 -   1.2s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.624832 -   0.8s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.664849 -   1.1s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.915377 -   1.1s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.857493 -   1.4s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.540524 -   0.9s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.724290 -   1.2s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.866790 -   1.2s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.899703 -   1.1s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.883954 -   1.2s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.526041 -   1.0s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.883954 -   1.2s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.761597 -   1.4s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.906853 -   1.1s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.577889 -   0.9s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.721334 -   1.4s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.815463 -   0.9s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.661281 -   1.4s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.779725 -   1.2s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.906853 -   1.2s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.580556 -   1.0s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.794740 -   1.0s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.928170 -   1.4s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.929766 -   1.1s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.938387 -   1.2s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.879383 -   1.1s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.670787 -   1.1s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.906853 -   1.3s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.603251 -   0.9s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.848001 -   1.3s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.740663 -   1.2s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.878327 -   0.9s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.740663 -   1.0s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.875991 -   1.2s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.716266 -   1.3s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.578869 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.753693 -   1.1s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.674776 -   0.8s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.729308 -   1.2s
[CV] c1=0.035487685725177805, c2=0.07066796438693485 .................
[CV]  c1=0.035487685725177805, c2=0.07066796438693485, score=0.607039 -   0.9s
[CV] c1=0.7754820747377101, c2=0.12099050393613156 ...................
[CV]  c1=0.7754820747377101, c2=0.12099050393613156, score=0.787287 -   1.3s
[CV] c1=0.38805051498984994, c2=0.01477620810001598 ..................
[CV]  c1=0.38805051498984994, c2=0.01477620810001598, score=0.782641 -   1.4s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.720311 -   1.2s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.919762 -   1.1s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.729308 -   1.2s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.788630 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.852821 -   1.1s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.906853 -   1.2s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.547996 -   1.0s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.855614 -   1.2s
[CV] c1=1.2077186464874288, c2=0.11106721030811739 ...................
[CV]  c1=1.2077186464874288, c2=0.11106721030811739, score=0.722890 -   1.1s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.728584 -   1.1s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.812131 -   1.1s
[CV] c1=0.5672718732034153, c2=0.02408083022682672 ...................
[CV]  c1=0.5672718732034153, c2=0.02408083022682672, score=0.899703 -   1.3s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.841313 -   1.4s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.852672 -   1.2s
[CV] c1=0.725079276744011, c2=0.0025324013059438034 ..................
[CV]  c1=0.725079276744011, c2=0.0025324013059438034, score=0.843338 -   1.2s
[CV] c1=0.15761238349200285, c2=0.002525593517619589 .................
[CV]  c1=0.15761238349200285, c2=0.002525593517619589, score=0.867217 -   1.5s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.866790 -   1.1s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.741434 -   1.3s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.920970 -   1.1s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.728987 -   0.9s
[CV] c1=0.08401658210095098, c2=0.01884625069711085 ..................
[CV]  c1=0.08401658210095098, c2=0.01884625069711085, score=0.920970 -   1.5s
[CV] c1=0.10252491344185391, c2=0.035456409715521185 .................
[CV]  c1=0.10252491344185391, c2=0.035456409715521185, score=0.814619 -   1.2s
[CV] c1=0.1942293390156905, c2=0.0118048238421011 ....................
[CV]  c1=0.1942293390156905, c2=0.0118048238421011, score=0.839369 -   1.1s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.838429 -   1.1s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.691890 -   1.1s
[CV] c1=0.489724053657197, c2=0.044922427709806804 ...................
[CV]  c1=0.489724053657197, c2=0.044922427709806804, score=0.656490 -   1.2s
[CV] c1=0.037804502799856664, c2=0.17775310605580735 .................
[CV]  c1=0.037804502799856664, c2=0.17775310605580735, score=0.707931 -   1.2s
[CV] c1=0.48021458727568206, c2=0.024520344430852173 .................
[CV]  c1=0.48021458727568206, c2=0.024520344430852173, score=0.710539 -   1.2s
[CV] c1=1.1913664771508643, c2=0.02636126240604801 ...................
[CV]  c1=1.1913664771508643, c2=0.02636126240604801, score=0.677417 -   1.2s
[CV] c1=0.011396903498125098, c2=0.08331303274987872 .................
[CV]  c1=0.011396903498125098, c2=0.08331303274987872, score=0.866790 -   1.1s
[CV] c1=0.389627350050321, c2=0.20541641674647737 ....................
[CV]  c1=0.389627350050321, c2=0.20541641674647737, score=0.877067 -   1.1s
[CV] c1=0.478213957506215, c2=0.020477014457446593 ...................
[CV]  c1=0.478213957506215, c2=0.020477014457446593, score=0.793956 -   1.2s
[CV] c1=0.585686407327112, c2=0.012901559348345326 ...................
[CV]  c1=0.585686407327112, c2=0.012901559348345326, score=0.852821 -   1.4s
[CV] c1=0.32462532886586554, c2=0.018288220546846753 .................
[CV]  c1=0.32462532886586554, c2=0.018288220546846753, score=0.848001 -   1.3s
[CV] c1=0.7414419018297659, c2=0.12193121091232882 ...................
[CV]  c1=0.7414419018297659, c2=0.12193121091232882, score=0.853988 -   1.0s
Training done in: 7.486107s
     Saving training model...
        Saving training model done in: 0.013334s
*********************************
Prediction done in: 0.023981s