Run1_v1.txt 29.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: False False
Report file: _v9
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003760s
{'lemma': 'δsoxs', 'postag': 'NN', '+1:lemma': 'pq', '+1:postag': 'NN'}
{'lemma': 'affyexp', 'postag': 'JJ', '+1:lemma': '_', '+1:postag': 'NN'}
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.905489 -   1.1s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.577889 -   0.9s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.679766 -   1.1s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.767569 -   1.1s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.838429 -   1.2s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.857493 -   1.0s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.938387 -   1.1s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.848001 -   1.0s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.660012 -   1.0s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.721334 -   1.2s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.669962 -   0.8s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.703150 -   1.2s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.724515 -   1.2s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.708877 -   1.2s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.679766 -   1.2s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.597458 -   1.0s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.720311 -   1.2s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.661884 -   1.0s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.761418 -   1.2s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.586182 -   0.9s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.848001 -   1.2s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.596949 -   1.0s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.586182 -   1.1s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.905489 -   1.1s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.920970 -   1.0s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.866790 -   1.1s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.756561 -   1.2s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.741434 -   1.1s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.857493 -   1.1s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.687300 -   1.1s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.628354 -   1.1s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.921915 -   1.2s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.906853 -   1.2s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.674776 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.609849 -   1.0s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.547996 -   0.9s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.848001 -   1.2s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.773430 -   1.2s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.538621 -   0.9s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.848001 -   1.3s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.679766 -   0.9s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.906853 -   1.1s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.921915 -   1.1s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.776203 -   1.1s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.872249 -   1.2s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.784628 -   1.2s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.741434 -   1.1s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.687750 -   1.1s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.710539 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.627348 -   1.0s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.761418 -   1.0s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.740663 -   1.4s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.730083 -   1.2s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.583681 -   0.9s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.899703 -   1.2s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.781163 -   0.9s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.871555 -   1.2s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.881356 -   1.3s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.855614 -   1.1s
[CV] c1=0.24819385946875622, c2=0.052655886800089084 .................
[CV]  c1=0.24819385946875622, c2=0.052655886800089084, score=0.740663 -   1.2s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.908205 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.710539 -   1.1s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.903565 -   1.0s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.928170 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.624124 -   1.1s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.710369 -   1.1s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.735607 -   1.2s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.632439 -   1.0s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.920970 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.698982 -   1.0s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.841822 -   1.1s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.848001 -   1.2s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.741527 -   1.0s
[CV] c1=0.5713116669674538, c2=0.01054418037901807 ...................
[CV]  c1=0.5713116669674538, c2=0.01054418037901807, score=0.883954 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.659056 -   1.1s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.704237 -   1.1s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.838429 -   1.2s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.697912 -   1.1s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.741434 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.788630 -   1.1s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.694090 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.761818 -   1.0s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.818617 -   1.2s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.899703 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.526041 -   1.0s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.592237 -   0.9s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.870763 -   1.1s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.816469 -   1.2s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.866790 -   1.2s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.843581 -   1.1s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.838429 -   1.5s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.899703 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.570419 -   0.9s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.530341 -   0.9s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.674776 -   1.0s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.721334 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.753693 -   1.1s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.860755 -   1.2s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.852672 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.589307 -   0.8s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.716266 -   0.9s
[CV] c1=0.22716579831507944, c2=0.007171535474090697 .................
[CV]  c1=0.22716579831507944, c2=0.007171535474090697, score=0.674776 -   1.3s
[CV] c1=0.09651425305864975, c2=0.0039926239609599816 ................
[CV]  c1=0.09651425305864975, c2=0.0039926239609599816, score=0.924594 -   1.4s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.847745 -   1.1s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.722890 -   1.2s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.848001 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.817004 -   1.3s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.710539 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.606581 -   1.0s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.920970 -   0.9s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.713945 -   1.2s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.710539 -   1.1s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.578904 -   1.0s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.639214 -   1.2s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.935924 -   1.0s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.899703 -   1.1s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.674776 -   1.3s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.784628 -   1.2s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.761165 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.796488 -   0.9s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.740663 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.917838 -   1.1s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.673541 -   1.2s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.605840 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.838429 -   1.1s
[CV] c1=0.5461072593339137, c2=0.002561125547217938 ..................
[CV]  c1=0.5461072593339137, c2=0.002561125547217938, score=0.728584 -   1.2s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.920970 -   1.3s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.720535 -   1.2s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.639214 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.648261 -   0.9s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.906853 -   1.2s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.555809 -   1.0s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.899703 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.530341 -   0.9s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.639214 -   0.9s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.608719 -   1.0s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.866790 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.883034 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.648261 -   1.4s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.541373 -   0.7s
[CV] c1=0.20181412872449603, c2=0.1831099538162916 ...................
[CV]  c1=0.20181412872449603, c2=0.1831099538162916, score=0.906294 -   1.1s
[CV] c1=0.12349654401855631, c2=0.02271624803463124 ..................
[CV]  c1=0.12349654401855631, c2=0.02271624803463124, score=0.906853 -   1.1s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.566256 -   1.0s
[CV] c1=0.1550751527481274, c2=0.0018910637535844298 .................
[CV]  c1=0.1550751527481274, c2=0.0018910637535844298, score=0.803761 -   1.2s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.727700 -   1.1s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.874934 -   1.1s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.656490 -   1.1s
[CV] c1=0.9058341641460185, c2=0.007378307188927494 ..................
[CV]  c1=0.9058341641460185, c2=0.007378307188927494, score=0.891760 -   1.1s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.616903 -   0.9s
[CV] c1=1.0380596275637475, c2=0.18279171536318017 ...................
[CV]  c1=1.0380596275637475, c2=0.18279171536318017, score=0.685536 -   1.1s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.753176 -   1.1s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.710303 -   1.2s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.899703 -   1.2s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.614746 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.616903 -   0.9s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.848001 -   1.2s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.852821 -   1.0s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.919762 -   1.1s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.680407 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.888529 -   1.1s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.680867 -   1.1s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.660012 -   1.0s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.848001 -   1.1s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.800487 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.740663 -   1.1s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.867013 -   1.2s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.784199 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.679766 -   1.1s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.689868 -   1.1s
[CV] c1=0.17443878436909793, c2=0.025545309300829405 .................
[CV]  c1=0.17443878436909793, c2=0.025545309300829405, score=0.906853 -   1.0s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.899703 -   1.3s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.919762 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.919762 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.689868 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.689868 -   0.8s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.775757 -   1.1s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.798294 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.879383 -   1.2s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.573741 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.680407 -   0.8s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.845912 -   1.1s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.556324 -   0.9s
[CV] c1=0.33745249047104287, c2=0.12028799387317968 ..................
[CV]  c1=0.33745249047104287, c2=0.12028799387317968, score=0.715320 -   1.0s
[CV] c1=1.395645503093999, c2=0.03913303306397459 ....................
[CV]  c1=1.395645503093999, c2=0.03913303306397459, score=0.648261 -   1.4s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.816730 -   1.0s
[CV] c1=0.1126557712627844, c2=0.10045738310383956 ...................
[CV]  c1=0.1126557712627844, c2=0.10045738310383956, score=0.919762 -   1.1s
[CV] c1=0.5000947711428705, c2=0.016584093219888196 ..................
[CV]  c1=0.5000947711428705, c2=0.016584093219888196, score=0.768203 -   1.1s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.866790 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.748264 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.624124 -   1.0s
[CV] c1=0.27752606848750366, c2=0.036947033112907056 .................
[CV]  c1=0.27752606848750366, c2=0.036947033112907056, score=0.920970 -   1.2s
[CV] c1=0.5994878159065081, c2=0.04116230984146705 ...................
[CV]  c1=0.5994878159065081, c2=0.04116230984146705, score=0.883954 -   1.2s
[CV] c1=0.38390254403775603, c2=0.019141773881786436 .................
[CV]  c1=0.38390254403775603, c2=0.019141773881786436, score=0.761418 -   1.1s
[CV] c1=1.348060881200924, c2=0.05731692872510329 ....................
[CV]  c1=1.348060881200924, c2=0.05731692872510329, score=0.800487 -   1.1s
[CV] c1=1.24594687727841, c2=0.044969845912413944 ....................
[CV]  c1=1.24594687727841, c2=0.044969845912413944, score=0.776399 -   1.0s
Training done in: 7.289575s
     Saving training model...
        Saving training model done in: 0.015155s
*********************************
Prediction done in: 0.026515s