Run1_v10.txt 72.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
-------------------------------- PARAMETERS --------------------------------
Path of test and training data sets: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
Path of outputs: /home/egaytan/automatic-extraction-growth-conditions/CRF/
File with training data set: training-data-set-70-NER.txt
File with test data set: test-data-set-30-NER.txt
reportName: Run1
Exclude stop words: False
Levels: S1: FalseS2: FalseS3: FalseS4: False
Run variant: 10
Number of rules on report file: 500
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003715s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
           0   1
0      lemma   :
1     postag   :
2   -1:lemma  in
3  -1:postag  IN
4   +1:lemma  m9
5  +1:postag  NN
--------------------------- FeaturesTest -----------------------------
           0           1
0      lemma  delta-arca
1     postag          NN
2   -1:lemma           _
3  -1:postag          NN
4   +1:lemma           _
5  +1:postag          CD
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[CV] c1=0.35323131605805247, c2=0.030647632640799217 .................
[CV]  c1=0.35323131605805247, c2=0.030647632640799217, score=0.660714 -   0.9s
[CV] c1=0.5021681905536242, c2=0.03436716259404434 ...................
[CV]  c1=0.5021681905536242, c2=0.03436716259404434, score=0.767954 -   1.0s
[CV] c1=0.169997353321218, c2=0.0036601029645213392 ..................
[CV]  c1=0.169997353321218, c2=0.0036601029645213392, score=0.823762 -   1.1s
[CV] c1=0.01654084590846588, c2=0.04105834908143077 ..................
[CV]  c1=0.01654084590846588, c2=0.04105834908143077, score=0.847760 -   1.0s
[CV] c1=1.4577491041183357, c2=0.010276123631101227 ..................
[CV]  c1=1.4577491041183357, c2=0.010276123631101227, score=0.684561 -   1.0s
[CV] c1=0.522058813513561, c2=0.021440833392886532 ...................
[CV]  c1=0.522058813513561, c2=0.021440833392886532, score=0.765786 -   1.2s
[CV] c1=0.6358592021719194, c2=0.016919674820147782 ..................
[CV]  c1=0.6358592021719194, c2=0.016919674820147782, score=0.724202 -   1.1s
[CV] c1=0.3962317537235285, c2=0.027478672902279955 ..................
[CV]  c1=0.3962317537235285, c2=0.027478672902279955, score=0.789470 -   1.2s
[CV] c1=0.03632647795173988, c2=0.11097659361523925 ..................
[CV]  c1=0.03632647795173988, c2=0.11097659361523925, score=0.809670 -   1.1s
[CV] c1=1.0569360523895825, c2=0.014553013344968125 ..................
[CV]  c1=1.0569360523895825, c2=0.014553013344968125, score=0.718789 -   1.0s
[CV] c1=0.19117283922751835, c2=0.06092555195887511 ..................
[CV]  c1=0.19117283922751835, c2=0.06092555195887511, score=0.784591 -   1.1s
[CV] c1=0.2815044616814552, c2=0.10764004675667396 ...................
[CV]  c1=0.2815044616814552, c2=0.10764004675667396, score=0.863365 -   1.1s
[CV] c1=0.7832205821232678, c2=0.015848588019002834 ..................
[CV]  c1=0.7832205821232678, c2=0.015848588019002834, score=0.834696 -   1.1s
[CV] c1=0.6296162101633775, c2=0.017986059951393695 ..................
[CV]  c1=0.6296162101633775, c2=0.017986059951393695, score=0.722532 -   1.1s
[CV] c1=0.19591580609100734, c2=0.05748809643950051 ..................
[CV]  c1=0.19591580609100734, c2=0.05748809643950051, score=0.885183 -   1.1s
[CV] c1=0.14699040114361245, c2=0.006873039354974641 .................
[CV]  c1=0.14699040114361245, c2=0.006873039354974641, score=0.809235 -   1.1s
[CV] c1=0.2864563496637691, c2=0.09620232551772682 ...................
[CV]  c1=0.2864563496637691, c2=0.09620232551772682, score=0.779450 -   1.1s
[CV] c1=0.4385737435744184, c2=0.07185833429263476 ...................
[CV]  c1=0.4385737435744184, c2=0.07185833429263476, score=0.759324 -   1.0s
[CV] c1=0.21681786748339343, c2=0.02164295860302985 ..................
[CV]  c1=0.21681786748339343, c2=0.02164295860302985, score=0.668577 -   0.9s
[CV] c1=0.37116598718275007, c2=0.04480010186885351 ..................
[CV]  c1=0.37116598718275007, c2=0.04480010186885351, score=0.738865 -   1.1s
[CV] c1=0.12599352615613874, c2=0.063782327956838 ....................
[CV]  c1=0.12599352615613874, c2=0.063782327956838, score=0.878030 -   1.2s
[CV] c1=0.049311118453307934, c2=0.05592388669047149 .................
[CV]  c1=0.049311118453307934, c2=0.05592388669047149, score=0.817469 -   1.0s
[CV] c1=0.42655387595367034, c2=0.027037053093833332 .................
[CV]  c1=0.42655387595367034, c2=0.027037053093833332, score=0.682186 -   0.9s
[CV] c1=0.2815044616814552, c2=0.10764004675667396 ...................
[CV]  c1=0.2815044616814552, c2=0.10764004675667396, score=0.785237 -   1.0s
[CV] c1=0.28837444586675987, c2=0.13477556958121814 ..................
[CV]  c1=0.28837444586675987, c2=0.13477556958121814, score=0.717550 -   1.1s
[CV] c1=0.1143911144307279, c2=0.021785850868703948 ..................
[CV]  c1=0.1143911144307279, c2=0.021785850868703948, score=0.844735 -   1.0s
[CV] c1=0.5376022708541929, c2=0.12198703506266317 ...................
[CV]  c1=0.5376022708541929, c2=0.12198703506266317, score=0.775220 -   1.0s
[CV] c1=0.006215968333772049, c2=0.0018628975239383555 ...............
[CV]  c1=0.006215968333772049, c2=0.0018628975239383555, score=0.846279 -   1.0s
[CV] c1=0.2864563496637691, c2=0.09620232551772682 ...................
[CV]  c1=0.2864563496637691, c2=0.09620232551772682, score=0.866154 -   1.1s
[CV] c1=0.4385737435744184, c2=0.07185833429263476 ...................
[CV]  c1=0.4385737435744184, c2=0.07185833429263476, score=0.659964 -   0.8s
[CV] c1=1.2290657383278605, c2=0.009006508580737356 ..................
[CV]  c1=1.2290657383278605, c2=0.009006508580737356, score=0.710430 -   1.0s
[CV] c1=0.37116598718275007, c2=0.04480010186885351 ..................
[CV]  c1=0.37116598718275007, c2=0.04480010186885351, score=0.659964 -   0.9s
[CV] c1=0.03632647795173988, c2=0.11097659361523925 ..................
[CV]  c1=0.03632647795173988, c2=0.11097659361523925, score=0.806011 -   1.1s
[CV] c1=0.45033243545986185, c2=0.06029654055920163 ..................
[CV]  c1=0.45033243545986185, c2=0.06029654055920163, score=0.855812 -   1.1s
[CV] c1=0.51062298498198, c2=0.07177190020751281 .....................
[CV]  c1=0.51062298498198, c2=0.07177190020751281, score=0.825290 -   1.1s
[CV] c1=0.2815044616814552, c2=0.10764004675667396 ...................
[CV]  c1=0.2815044616814552, c2=0.10764004675667396, score=0.736027 -   1.1s
[CV] c1=0.7832205821232678, c2=0.015848588019002834 ..................
[CV]  c1=0.7832205821232678, c2=0.015848588019002834, score=0.671263 -   1.1s
[CV] c1=0.19315385633023527, c2=0.02615099182751104 ..................
[CV]  c1=0.19315385633023527, c2=0.02615099182751104, score=0.668577 -   0.8s
[CV] c1=0.05796176704795284, c2=0.040125522565763974 .................
[CV]  c1=0.05796176704795284, c2=0.040125522565763974, score=0.773043 -   1.1s
[CV] c1=0.14098413760025477, c2=0.03389632521649788 ..................
[CV]  c1=0.14098413760025477, c2=0.03389632521649788, score=0.669531 -   0.8s
[CV] c1=0.2247571244665834, c2=0.03907640704825807 ...................
[CV]  c1=0.2247571244665834, c2=0.03907640704825807, score=0.661368 -   0.9s
[CV] c1=0.522058813513561, c2=0.021440833392886532 ...................
[CV]  c1=0.522058813513561, c2=0.021440833392886532, score=0.732643 -   1.2s
[CV] c1=0.01823519674096219, c2=0.048541546570036814 .................
[CV]  c1=0.01823519674096219, c2=0.048541546570036814, score=0.809100 -   1.1s
[CV] c1=0.3962317537235285, c2=0.027478672902279955 ..................
[CV]  c1=0.3962317537235285, c2=0.027478672902279955, score=0.832488 -   1.1s
[CV] c1=0.3013745733172885, c2=0.03853396314530322 ...................
[CV]  c1=0.3013745733172885, c2=0.03853396314530322, score=0.774458 -   1.1s
[CV] c1=0.13998842827964883, c2=0.10614050841815473 ..................
[CV]  c1=0.13998842827964883, c2=0.10614050841815473, score=0.790536 -   1.1s
[CV] c1=0.19117283922751835, c2=0.06092555195887511 ..................
[CV]  c1=0.19117283922751835, c2=0.06092555195887511, score=0.878856 -   1.1s
[CV] c1=0.2089818386535038, c2=0.02650135102731585 ...................
[CV]  c1=0.2089818386535038, c2=0.02650135102731585, score=0.795658 -   1.2s
[CV] c1=0.28837444586675987, c2=0.13477556958121814 ..................
[CV]  c1=0.28837444586675987, c2=0.13477556958121814, score=0.773267 -   1.1s
[CV] c1=0.1143911144307279, c2=0.021785850868703948 ..................
[CV]  c1=0.1143911144307279, c2=0.021785850868703948, score=0.779059 -   1.0s
[CV] c1=0.5376022708541929, c2=0.12198703506266317 ...................
[CV]  c1=0.5376022708541929, c2=0.12198703506266317, score=0.721307 -   1.1s
[CV] c1=0.2676413952260135, c2=0.035382984021573624 ..................
[CV]  c1=0.2676413952260135, c2=0.035382984021573624, score=0.882080 -   1.1s
[CV] c1=0.27781845963558904, c2=0.04754844702300917 ..................
[CV]  c1=0.27781845963558904, c2=0.04754844702300917, score=0.884145 -   1.1s
[CV] c1=1.014770994949816, c2=0.19244795811541265 ....................
[CV]  c1=1.014770994949816, c2=0.19244795811541265, score=0.525645 -   0.9s
[CV] c1=0.8174101996988045, c2=0.06954778929403152 ...................
[CV]  c1=0.8174101996988045, c2=0.06954778929403152, score=0.607676 -   0.9s
[CV] c1=0.686280166321115, c2=0.05303923054196025 ....................
[CV]  c1=0.686280166321115, c2=0.05303923054196025, score=0.693313 -   1.1s
[CV] c1=0.9774216223419709, c2=0.01677645289501469 ...................
[CV]  c1=0.9774216223419709, c2=0.01677645289501469, score=0.833006 -   1.1s
[CV] c1=0.7491758853340312, c2=0.009638567399376016 ..................
[CV]  c1=0.7491758853340312, c2=0.009638567399376016, score=0.680009 -   1.1s
[CV] c1=0.2278416914743745, c2=0.1102087607314831 ....................
[CV]  c1=0.2278416914743745, c2=0.1102087607314831, score=0.746586 -   1.1s
[CV] c1=0.3599653211638866, c2=0.005116412997909836 ..................
[CV]  c1=0.3599653211638866, c2=0.005116412997909836, score=0.714079 -   0.8s
[CV] c1=1.0583649953095466, c2=0.049482573325191126 ..................
[CV]  c1=1.0583649953095466, c2=0.049482573325191126, score=0.660853 -   1.3s
[CV] c1=1.1247970122198137, c2=0.010804248115920324 ..................
[CV]  c1=1.1247970122198137, c2=0.010804248115920324, score=0.666676 -   1.1s
[CV] c1=0.05796176704795284, c2=0.040125522565763974 .................
[CV]  c1=0.05796176704795284, c2=0.040125522565763974, score=0.893261 -   1.1s
[CV] c1=0.4142231178840438, c2=0.05139789804626665 ...................
[CV]  c1=0.4142231178840438, c2=0.05139789804626665, score=0.827057 -   1.0s
[CV] c1=0.05963440269300229, c2=0.006122151516373232 .................
[CV]  c1=0.05963440269300229, c2=0.006122151516373232, score=0.879992 -   1.1s
[CV] c1=0.6578187595472836, c2=0.007898361614430196 ..................
[CV]  c1=0.6578187595472836, c2=0.007898361614430196, score=0.808106 -   1.1s
[CV] c1=0.24107958240128294, c2=0.004200414730172063 .................
[CV]  c1=0.24107958240128294, c2=0.004200414730172063, score=0.802864 -   1.1s
[CV] c1=0.686280166321115, c2=0.05303923054196025 ....................
[CV]  c1=0.686280166321115, c2=0.05303923054196025, score=0.835908 -   1.1s
[CV] c1=0.11631566976799346, c2=0.012748291840920543 .................
[CV]  c1=0.11631566976799346, c2=0.012748291840920543, score=0.670393 -   0.9s
[CV] c1=1.0569360523895825, c2=0.014553013344968125 ..................
[CV]  c1=1.0569360523895825, c2=0.014553013344968125, score=0.826370 -   1.1s
[CV] c1=0.6938786556567085, c2=0.04247723911620038 ...................
[CV]  c1=0.6938786556567085, c2=0.04247723911620038, score=0.692421 -   1.1s
[CV] c1=0.2089818386535038, c2=0.02650135102731585 ...................
[CV]  c1=0.2089818386535038, c2=0.02650135102731585, score=0.797090 -   1.2s
[CV] c1=0.021240543071906298, c2=0.0005874533278475703 ...............
[CV]  c1=0.021240543071906298, c2=0.0005874533278475703, score=0.877266 -   1.1s
[CV] c1=0.6296162101633775, c2=0.017986059951393695 ..................
[CV]  c1=0.6296162101633775, c2=0.017986059951393695, score=0.822933 -   1.0s
[CV] c1=1.1522689597276334, c2=0.049847336710477 .....................
[CV]  c1=1.1522689597276334, c2=0.049847336710477, score=0.651641 -   1.1s
[CV] c1=0.25299059230631105, c2=0.025960207756576894 .................
[CV]  c1=0.25299059230631105, c2=0.025960207756576894, score=0.803127 -   1.1s
[CV] c1=0.0894483106041027, c2=0.045689939359832316 ..................
[CV]  c1=0.0894483106041027, c2=0.045689939359832316, score=0.876144 -   1.1s
[CV] c1=0.2864031390018535, c2=0.04659408124203196 ...................
[CV]  c1=0.2864031390018535, c2=0.04659408124203196, score=0.660714 -   0.9s
[CV] c1=1.2290657383278605, c2=0.009006508580737356 ..................
[CV]  c1=1.2290657383278605, c2=0.009006508580737356, score=0.602651 -   0.9s
[CV] c1=0.8095469589125729, c2=0.00697746985087485 ...................
[CV]  c1=0.8095469589125729, c2=0.00697746985087485, score=0.751511 -   1.0s
[CV] c1=0.03632647795173988, c2=0.11097659361523925 ..................
[CV]  c1=0.03632647795173988, c2=0.11097659361523925, score=0.672631 -   0.9s
[CV] c1=0.13998842827964883, c2=0.10614050841815473 ..................
[CV]  c1=0.13998842827964883, c2=0.10614050841815473, score=0.661368 -   0.9s
[CV] c1=0.08230962763616256, c2=0.10303604259774368 ..................
[CV]  c1=0.08230962763616256, c2=0.10303604259774368, score=0.668299 -   0.9s
[CV] c1=0.6771011407200376, c2=0.05393316391808095 ...................
[CV]  c1=0.6771011407200376, c2=0.05393316391808095, score=0.777757 -   1.1s
[CV] c1=0.012907399266719896, c2=0.10586076163067398 .................
[CV]  c1=0.012907399266719896, c2=0.10586076163067398, score=0.674035 -   0.8s
[CV] c1=0.7832205821232678, c2=0.015848588019002834 ..................
[CV]  c1=0.7832205821232678, c2=0.015848588019002834, score=0.791575 -   1.1s
[CV] c1=0.6296162101633775, c2=0.017986059951393695 ..................
[CV]  c1=0.6296162101633775, c2=0.017986059951393695, score=0.765786 -   1.1s
[CV] c1=0.19591580609100734, c2=0.05748809643950051 ..................
[CV]  c1=0.19591580609100734, c2=0.05748809643950051, score=0.809117 -   1.1s
[CV] c1=0.14699040114361245, c2=0.006873039354974641 .................
[CV]  c1=0.14699040114361245, c2=0.006873039354974641, score=0.846508 -   1.0s
[CV] c1=0.0894483106041027, c2=0.045689939359832316 ..................
[CV]  c1=0.0894483106041027, c2=0.045689939359832316, score=0.844735 -   1.1s
[CV] c1=0.2864031390018535, c2=0.04659408124203196 ...................
[CV]  c1=0.2864031390018535, c2=0.04659408124203196, score=0.832488 -   1.1s
[CV] c1=0.8174101996988045, c2=0.06954778929403152 ...................
[CV]  c1=0.8174101996988045, c2=0.06954778929403152, score=0.764845 -   1.0s
[CV] c1=0.3625029391050362, c2=0.061631559571731845 ..................
[CV]  c1=0.3625029391050362, c2=0.061631559571731845, score=0.659964 -   0.9s
[CV] c1=0.11631566976799346, c2=0.012748291840920543 .................
[CV]  c1=0.11631566976799346, c2=0.012748291840920543, score=0.774599 -   1.0s
[CV] c1=0.7491758853340312, c2=0.009638567399376016 ..................
[CV]  c1=0.7491758853340312, c2=0.009638567399376016, score=0.833826 -   1.1s
[CV] c1=0.2278416914743745, c2=0.1102087607314831 ....................
[CV]  c1=0.2278416914743745, c2=0.1102087607314831, score=0.731099 -   1.1s
[CV] c1=0.5477741605754481, c2=0.0014368432970399995 .................
[CV]  c1=0.5477741605754481, c2=0.0014368432970399995, score=0.827134 -   1.1s
[CV] c1=0.35323131605805247, c2=0.030647632640799217 .................
[CV]  c1=0.35323131605805247, c2=0.030647632640799217, score=0.832488 -   1.1s
[CV] c1=0.6779032915189199, c2=0.01670282951057246 ...................
[CV]  c1=0.6779032915189199, c2=0.01670282951057246, score=0.779508 -   1.1s
[CV] c1=0.03248779678022544, c2=0.05341150290559358 ..................
[CV]  c1=0.03248779678022544, c2=0.05341150290559358, score=0.764357 -   1.2s
[CV] c1=0.14699040114361245, c2=0.006873039354974641 .................
[CV]  c1=0.14699040114361245, c2=0.006873039354974641, score=0.893526 -   1.1s
[CV] c1=0.0894483106041027, c2=0.045689939359832316 ..................
[CV]  c1=0.0894483106041027, c2=0.045689939359832316, score=0.766899 -   1.1s
[CV] c1=0.4385737435744184, c2=0.07185833429263476 ...................
[CV]  c1=0.4385737435744184, c2=0.07185833429263476, score=0.715371 -   1.1s
[CV] c1=0.21681786748339343, c2=0.02164295860302985 ..................
[CV]  c1=0.21681786748339343, c2=0.02164295860302985, score=0.797090 -   1.1s
[CV] c1=0.7393384210184366, c2=0.013557344131307898 ..................
[CV]  c1=0.7393384210184366, c2=0.013557344131307898, score=0.681341 -   1.1s
[CV] c1=0.07110363454042393, c2=0.07272240129749212 ..................
[CV]  c1=0.07110363454042393, c2=0.07272240129749212, score=0.807206 -   1.0s
[CV] c1=0.938632330514135, c2=0.0021744236154997098 ..................
[CV]  c1=0.938632330514135, c2=0.0021744236154997098, score=0.624378 -   0.9s
[CV] c1=0.6771011407200376, c2=0.05393316391808095 ...................
[CV]  c1=0.6771011407200376, c2=0.05393316391808095, score=0.833119 -   1.1s
[CV] c1=0.7131549703291779, c2=0.0332797923053197 ....................
[CV]  c1=0.7131549703291779, c2=0.0332797923053197, score=0.697766 -   1.0s
[CV] c1=0.09144862722928117, c2=0.023121342687481623 .................
[CV]  c1=0.09144862722928117, c2=0.023121342687481623, score=0.831600 -   1.1s
[CV] c1=1.1247970122198137, c2=0.010804248115920324 ..................
[CV]  c1=1.1247970122198137, c2=0.010804248115920324, score=0.631699 -   1.1s
[CV] c1=0.03248779678022544, c2=0.05341150290559358 ..................
[CV]  c1=0.03248779678022544, c2=0.05341150290559358, score=0.899689 -   1.1s
[CV] c1=0.14098413760025477, c2=0.03389632521649788 ..................
[CV]  c1=0.14098413760025477, c2=0.03389632521649788, score=0.801994 -   1.1s
[CV] c1=0.22952219430003895, c2=0.14494810749737363 ..................
[CV]  c1=0.22952219430003895, c2=0.14494810749737363, score=0.659964 -   0.8s
[CV] c1=0.16702486891322157, c2=0.08220109706861589 ..................
[CV]  c1=0.16702486891322157, c2=0.08220109706861589, score=0.758277 -   1.1s
[CV] c1=0.6358592021719194, c2=0.016919674820147782 ..................
[CV]  c1=0.6358592021719194, c2=0.016919674820147782, score=0.765786 -   1.0s
[CV] c1=0.8095469589125729, c2=0.00697746985087485 ...................
[CV]  c1=0.8095469589125729, c2=0.00697746985087485, score=0.840674 -   1.2s
[CV] c1=0.03632647795173988, c2=0.11097659361523925 ..................
[CV]  c1=0.03632647795173988, c2=0.11097659361523925, score=0.781051 -   1.1s
[CV] c1=0.45033243545986185, c2=0.06029654055920163 ..................
[CV]  c1=0.45033243545986185, c2=0.06029654055920163, score=0.730540 -   1.1s
[CV] c1=0.2278416914743745, c2=0.1102087607314831 ....................
[CV]  c1=0.2278416914743745, c2=0.1102087607314831, score=0.873296 -   1.1s
[CV] c1=0.5477741605754481, c2=0.0014368432970399995 .................
[CV]  c1=0.5477741605754481, c2=0.0014368432970399995, score=0.862061 -   1.1s
[CV] c1=0.09144862722928117, c2=0.023121342687481623 .................
[CV]  c1=0.09144862722928117, c2=0.023121342687481623, score=0.660439 -   0.7s
[CV] c1=0.08394544105288367, c2=0.156683236754706 ....................
[CV]  c1=0.08394544105288367, c2=0.156683236754706, score=0.770255 -   1.2s
[CV] c1=0.029937978879128732, c2=0.005520277915074975 ................
[CV]  c1=0.029937978879128732, c2=0.005520277915074975, score=0.775999 -   1.1s
[CV] c1=0.01654084590846588, c2=0.04105834908143077 ..................
[CV]  c1=0.01654084590846588, c2=0.04105834908143077, score=0.896113 -   1.1s
[CV] c1=1.4577491041183357, c2=0.010276123631101227 ..................
[CV]  c1=1.4577491041183357, c2=0.010276123631101227, score=0.781240 -   1.1s
[CV] c1=0.522058813513561, c2=0.021440833392886532 ...................
[CV]  c1=0.522058813513561, c2=0.021440833392886532, score=0.690230 -   0.9s
[CV] c1=1.014770994949816, c2=0.19244795811541265 ....................
[CV]  c1=1.014770994949816, c2=0.19244795811541265, score=0.660970 -   1.0s
[CV] c1=0.0828408463649197, c2=0.0069691638323212506 .................
[CV]  c1=0.0828408463649197, c2=0.0069691638323212506, score=0.660439 -   0.9s
[CV] c1=0.3625029391050362, c2=0.061631559571731845 ..................
[CV]  c1=0.3625029391050362, c2=0.061631559571731845, score=0.796366 -   1.1s
[CV] c1=0.6663387372321942, c2=0.05081278019244946 ...................
[CV]  c1=0.6663387372321942, c2=0.05081278019244946, score=0.642515 -   0.9s
[CV] c1=0.7491758853340312, c2=0.009638567399376016 ..................
[CV]  c1=0.7491758853340312, c2=0.009638567399376016, score=0.675811 -   1.2s
[CV] c1=0.42655387595367034, c2=0.027037053093833332 .................
[CV]  c1=0.42655387595367034, c2=0.027037053093833332, score=0.786694 -   1.1s
[CV] c1=0.7131549703291779, c2=0.0332797923053197 ....................
[CV]  c1=0.7131549703291779, c2=0.0332797923053197, score=0.833119 -   1.0s
[CV] c1=0.28837444586675987, c2=0.13477556958121814 ..................
[CV]  c1=0.28837444586675987, c2=0.13477556958121814, score=0.846278 -   1.1s
[CV] c1=0.1143911144307279, c2=0.021785850868703948 ..................
[CV]  c1=0.1143911144307279, c2=0.021785850868703948, score=0.664027 -   0.9s
[CV] c1=1.1522689597276334, c2=0.049847336710477 .....................
[CV]  c1=1.1522689597276334, c2=0.049847336710477, score=0.557529 -   0.9s
[CV] c1=0.4142231178840438, c2=0.05139789804626665 ...................
[CV]  c1=0.4142231178840438, c2=0.05139789804626665, score=0.659964 -   0.9s
[CV] c1=1.4577491041183357, c2=0.010276123631101227 ..................
[CV]  c1=1.4577491041183357, c2=0.010276123631101227, score=0.542899 -   1.2s
[CV] c1=0.16702486891322157, c2=0.08220109706861589 ..................
[CV]  c1=0.16702486891322157, c2=0.08220109706861589, score=0.761151 -   1.2s
[CV] c1=0.24107958240128294, c2=0.004200414730172063 .................
[CV]  c1=0.24107958240128294, c2=0.004200414730172063, score=0.792128 -   1.2s
[CV] c1=0.686280166321115, c2=0.05303923054196025 ....................
[CV]  c1=0.686280166321115, c2=0.05303923054196025, score=0.771321 -   1.0s
[CV] c1=0.11631566976799346, c2=0.012748291840920543 .................
[CV]  c1=0.11631566976799346, c2=0.012748291840920543, score=0.846508 -   1.0s
[CV] c1=0.45033243545986185, c2=0.06029654055920163 ..................
[CV]  c1=0.45033243545986185, c2=0.06029654055920163, score=0.802066 -   1.1s
[CV] c1=0.51062298498198, c2=0.07177190020751281 .....................
[CV]  c1=0.51062298498198, c2=0.07177190020751281, score=0.777850 -   1.2s
[CV] c1=0.5477741605754481, c2=0.0014368432970399995 .................
[CV]  c1=0.5477741605754481, c2=0.0014368432970399995, score=0.780550 -   1.1s
[CV] c1=0.35323131605805247, c2=0.030647632640799217 .................
[CV]  c1=0.35323131605805247, c2=0.030647632640799217, score=0.791713 -   1.2s
[CV] c1=0.6296162101633775, c2=0.017986059951393695 ..................
[CV]  c1=0.6296162101633775, c2=0.017986059951393695, score=0.840009 -   1.1s
[CV] c1=1.1522689597276334, c2=0.049847336710477 .....................
[CV]  c1=1.1522689597276334, c2=0.049847336710477, score=0.698646 -   1.0s
[CV] c1=0.25299059230631105, c2=0.025960207756576894 .................
[CV]  c1=0.25299059230631105, c2=0.025960207756576894, score=0.667923 -   0.9s
[CV] c1=0.05963440269300229, c2=0.006122151516373232 .................
[CV]  c1=0.05963440269300229, c2=0.006122151516373232, score=0.827589 -   1.1s
[CV] c1=0.6578187595472836, c2=0.007898361614430196 ..................
[CV]  c1=0.6578187595472836, c2=0.007898361614430196, score=0.765786 -   1.1s
[CV] c1=1.4326633991238988, c2=0.01780960146566179 ...................
[CV]  c1=1.4326633991238988, c2=0.01780960146566179, score=0.610901 -   1.1s
[CV] c1=0.686280166321115, c2=0.05303923054196025 ....................
[CV]  c1=0.686280166321115, c2=0.05303923054196025, score=0.766476 -   1.1s
[CV] c1=0.9774216223419709, c2=0.01677645289501469 ...................
[CV]  c1=0.9774216223419709, c2=0.01677645289501469, score=0.629757 -   1.1s
[CV] c1=0.049311118453307934, c2=0.05592388669047149 .................
[CV]  c1=0.049311118453307934, c2=0.05592388669047149, score=0.813821 -   1.1s
[CV] c1=0.42655387595367034, c2=0.027037053093833332 .................
[CV]  c1=0.42655387595367034, c2=0.027037053093833332, score=0.832488 -   1.0s
[CV] c1=0.3599653211638866, c2=0.005116412997909836 ..................
[CV]  c1=0.3599653211638866, c2=0.005116412997909836, score=0.792128 -   1.1s
[CV] c1=0.49900426869297615, c2=0.10341430147097004 ..................
[CV]  c1=0.49900426869297615, c2=0.10341430147097004, score=0.772227 -   1.2s
[CV] c1=0.6779032915189199, c2=0.01670282951057246 ...................
[CV]  c1=0.6779032915189199, c2=0.01670282951057246, score=0.754185 -   1.1s
[CV] c1=0.03248779678022544, c2=0.05341150290559358 ..................
[CV]  c1=0.03248779678022544, c2=0.05341150290559358, score=0.817505 -   1.1s
[CV] c1=0.25299059230631105, c2=0.025960207756576894 .................
[CV]  c1=0.25299059230631105, c2=0.025960207756576894, score=0.881381 -   1.0s
[CV] c1=0.22952219430003895, c2=0.14494810749737363 ..................
[CV]  c1=0.22952219430003895, c2=0.14494810749737363, score=0.848976 -   1.1s
[CV] c1=0.7797225859093856, c2=0.00494104259400261 ...................
[CV]  c1=0.7797225859093856, c2=0.00494104259400261, score=0.677756 -   1.1s
[CV] c1=0.8174101996988045, c2=0.06954778929403152 ...................
[CV]  c1=0.8174101996988045, c2=0.06954778929403152, score=0.830434 -   1.1s
[CV] c1=0.3625029391050362, c2=0.061631559571731845 ..................
[CV]  c1=0.3625029391050362, c2=0.061631559571731845, score=0.858488 -   1.1s
[CV] c1=0.12599352615613874, c2=0.063782327956838 ....................
[CV]  c1=0.12599352615613874, c2=0.063782327956838, score=0.810732 -   1.1s
[CV] c1=0.049311118453307934, c2=0.05592388669047149 .................
[CV]  c1=0.049311118453307934, c2=0.05592388669047149, score=0.773043 -   1.2s
[CV] c1=0.6771011407200376, c2=0.05393316391808095 ...................
[CV]  c1=0.6771011407200376, c2=0.05393316391808095, score=0.791575 -   1.1s
[CV] c1=0.7131549703291779, c2=0.0332797923053197 ....................
[CV]  c1=0.7131549703291779, c2=0.0332797923053197, score=0.791575 -   1.0s
[CV] c1=4.758265895631386e-05, c2=0.04085117838740492 ................
[CV]  c1=4.758265895631386e-05, c2=0.04085117838740492, score=0.689364 -   0.9s
[CV] c1=1.1247970122198137, c2=0.010804248115920324 ..................
[CV]  c1=1.1247970122198137, c2=0.010804248115920324, score=0.817543 -   1.1s
[CV] c1=0.3523589676716019, c2=0.12271906262803907 ...................
[CV]  c1=0.3523589676716019, c2=0.12271906262803907, score=0.846278 -   1.1s
[CV] c1=0.03760486438216704, c2=0.019882091835878954 .................
[CV]  c1=0.03760486438216704, c2=0.019882091835878954, score=0.817505 -   1.0s
[CV] c1=0.2247571244665834, c2=0.03907640704825807 ...................
[CV]  c1=0.2247571244665834, c2=0.03907640704825807, score=0.790415 -   1.1s
[CV] c1=0.16702486891322157, c2=0.08220109706861589 ..................
[CV]  c1=0.16702486891322157, c2=0.08220109706861589, score=0.803909 -   1.0s
[CV] c1=0.6358592021719194, c2=0.016919674820147782 ..................
[CV]  c1=0.6358592021719194, c2=0.016919674820147782, score=0.795109 -   1.0s
[CV] c1=0.3962317537235285, c2=0.027478672902279955 ..................
[CV]  c1=0.3962317537235285, c2=0.027478672902279955, score=0.660714 -   0.9s
[CV] c1=0.15699671289133177, c2=0.005916106781166745 .................
[CV]  c1=0.15699671289133177, c2=0.005916106781166745, score=0.678208 -   0.9s
[CV] c1=0.6663387372321942, c2=0.05081278019244946 ...................
[CV]  c1=0.6663387372321942, c2=0.05081278019244946, score=0.777990 -   1.0s
[CV] c1=0.234895921068376, c2=0.0825746191898628 .....................
[CV]  c1=0.234895921068376, c2=0.0825746191898628, score=0.767272 -   1.1s
[CV] c1=0.7596011960255612, c2=0.013429570209622385 ..................
[CV]  c1=0.7596011960255612, c2=0.013429570209622385, score=0.826676 -   1.0s
[CV] c1=0.7131549703291779, c2=0.0332797923053197 ....................
[CV]  c1=0.7131549703291779, c2=0.0332797923053197, score=0.765808 -   1.0s
[CV] c1=0.49900426869297615, c2=0.10341430147097004 ..................
[CV]  c1=0.49900426869297615, c2=0.10341430147097004, score=0.715371 -   1.2s
[CV] c1=1.1247970122198137, c2=0.010804248115920324 ..................
[CV]  c1=1.1247970122198137, c2=0.010804248115920324, score=0.718789 -   1.0s
[CV] c1=0.3523589676716019, c2=0.12271906262803907 ...................
[CV]  c1=0.3523589676716019, c2=0.12271906262803907, score=0.775210 -   1.1s
[CV] c1=0.03760486438216704, c2=0.019882091835878954 .................
[CV]  c1=0.03760486438216704, c2=0.019882091835878954, score=0.776256 -   1.1s
[CV] c1=0.05963440269300229, c2=0.006122151516373232 .................
[CV]  c1=0.05963440269300229, c2=0.006122151516373232, score=0.773914 -   1.1s
[CV] c1=0.6848313844281044, c2=0.0280340157578724 ....................
[CV]  c1=0.6848313844281044, c2=0.0280340157578724, score=0.663170 -   1.0s
[CV] c1=0.24107958240128294, c2=0.004200414730172063 .................
[CV]  c1=0.24107958240128294, c2=0.004200414730172063, score=0.841486 -   1.1s
[CV] c1=0.8095469589125729, c2=0.00697746985087485 ...................
[CV]  c1=0.8095469589125729, c2=0.00697746985087485, score=0.685290 -   1.1s
[CV] c1=0.11631566976799346, c2=0.012748291840920543 .................
[CV]  c1=0.11631566976799346, c2=0.012748291840920543, score=0.893744 -   1.1s
[CV] c1=0.45033243545986185, c2=0.06029654055920163 ..................
[CV]  c1=0.45033243545986185, c2=0.06029654055920163, score=0.656394 -   1.0s
[CV] c1=0.19117283922751835, c2=0.06092555195887511 ..................
[CV]  c1=0.19117283922751835, c2=0.06092555195887511, score=0.664245 -   0.9s
[CV] c1=0.14171914762096757, c2=0.03753534075742085 ..................
[CV]  c1=0.14171914762096757, c2=0.03753534075742085, score=0.668577 -   0.9s
[CV] c1=3.4975663200975466, c2=0.012150842543697169 ..................
[CV]  c1=3.4975663200975466, c2=0.012150842543697169, score=0.291579 -   0.8s
[CV] c1=0.7832205821232678, c2=0.015848588019002834 ..................
[CV]  c1=0.7832205821232678, c2=0.015848588019002834, score=0.676101 -   0.7s
[CV] c1=0.5021681905536242, c2=0.03436716259404434 ...................
[CV]  c1=0.5021681905536242, c2=0.03436716259404434, score=0.659964 -   0.8s
[CV] c1=0.029937978879128732, c2=0.005520277915074975 ................
[CV]  c1=0.029937978879128732, c2=0.005520277915074975, score=0.680754 -   0.8s
[CV] c1=0.5376022708541929, c2=0.12198703506266317 ...................
[CV]  c1=0.5376022708541929, c2=0.12198703506266317, score=0.700479 -   1.0s
[CV] c1=0.006215968333772049, c2=0.0018628975239383555 ...............
[CV]  c1=0.006215968333772049, c2=0.0018628975239383555, score=0.874018 -   1.1s
[CV] c1=0.2864563496637691, c2=0.09620232551772682 ...................
[CV]  c1=0.2864563496637691, c2=0.09620232551772682, score=0.740034 -   1.1s
[CV] c1=0.4385737435744184, c2=0.07185833429263476 ...................
[CV]  c1=0.4385737435744184, c2=0.07185833429263476, score=0.777850 -   1.1s
[CV] c1=0.0828408463649197, c2=0.0069691638323212506 .................
[CV]  c1=0.0828408463649197, c2=0.0069691638323212506, score=0.825876 -   1.1s
[CV] c1=0.00021873398074988694, c2=0.005098411484197325 ..............
[CV]  c1=0.00021873398074988694, c2=0.005098411484197325, score=0.820290 -   1.1s
[CV] c1=0.3963052139293561, c2=0.001644913002610705 ..................
[CV]  c1=0.3963052139293561, c2=0.001644913002610705, score=0.706816 -   0.8s
[CV] c1=0.234895921068376, c2=0.0825746191898628 .....................
[CV]  c1=0.234895921068376, c2=0.0825746191898628, score=0.809696 -   1.0s
[CV] c1=0.6771011407200376, c2=0.05393316391808095 ...................
[CV]  c1=0.6771011407200376, c2=0.05393316391808095, score=0.690605 -   1.1s
[CV] c1=0.012907399266719896, c2=0.10586076163067398 .................
[CV]  c1=0.012907399266719896, c2=0.10586076163067398, score=0.899464 -   1.0s
[CV] c1=4.758265895631386e-05, c2=0.04085117838740492 ................
[CV]  c1=4.758265895631386e-05, c2=0.04085117838740492, score=0.802956 -   1.2s
[CV] c1=0.19315385633023527, c2=0.02615099182751104 ..................
[CV]  c1=0.19315385633023527, c2=0.02615099182751104, score=0.889133 -   1.0s
[CV] c1=0.19591580609100734, c2=0.05748809643950051 ..................
[CV]  c1=0.19591580609100734, c2=0.05748809643950051, score=0.661368 -   1.0s
[CV] c1=0.25299059230631105, c2=0.025960207756576894 .................
[CV]  c1=0.25299059230631105, c2=0.025960207756576894, score=0.805819 -   1.1s
[CV] c1=0.0894483106041027, c2=0.045689939359832316 ..................
[CV]  c1=0.0894483106041027, c2=0.045689939359832316, score=0.826344 -   1.1s
[CV] c1=0.2864031390018535, c2=0.04659408124203196 ...................
[CV]  c1=0.2864031390018535, c2=0.04659408124203196, score=0.787824 -   1.1s
[CV] c1=0.21681786748339343, c2=0.02164295860302985 ..................
[CV]  c1=0.21681786748339343, c2=0.02164295860302985, score=0.874907 -   1.1s
[CV] c1=0.7393384210184366, c2=0.013557344131307898 ..................
[CV]  c1=0.7393384210184366, c2=0.013557344131307898, score=0.678025 -   0.9s
[CV] c1=0.9774216223419709, c2=0.01677645289501469 ...................
[CV]  c1=0.9774216223419709, c2=0.01677645289501469, score=0.718789 -   1.0s
[CV] c1=0.7491758853340312, c2=0.009638567399376016 ..................
[CV]  c1=0.7491758853340312, c2=0.009638567399376016, score=0.803473 -   1.1s
[CV] c1=0.2278416914743745, c2=0.1102087607314831 ....................
[CV]  c1=0.2278416914743745, c2=0.1102087607314831, score=0.795075 -   1.0s
[CV] c1=0.2815044616814552, c2=0.10764004675667396 ...................
[CV]  c1=0.2815044616814552, c2=0.10764004675667396, score=0.773237 -   1.1s
[CV] c1=1.0583649953095466, c2=0.049482573325191126 ..................
[CV]  c1=1.0583649953095466, c2=0.049482573325191126, score=0.583487 -   1.2s
[CV] c1=1.1247970122198137, c2=0.010804248115920324 ..................
[CV]  c1=1.1247970122198137, c2=0.010804248115920324, score=0.607641 -   0.9s
[CV] c1=0.169997353321218, c2=0.0036601029645213392 ..................
[CV]  c1=0.169997353321218, c2=0.0036601029645213392, score=0.691391 -   0.9s
[CV] c1=0.08808878502897181, c2=0.08234718187120992 ..................
[CV]  c1=0.08808878502897181, c2=0.08234718187120992, score=0.766899 -   1.2s
[CV] c1=1.4577491041183357, c2=0.010276123631101227 ..................
[CV]  c1=1.4577491041183357, c2=0.010276123631101227, score=0.612811 -   1.1s
[CV] c1=0.522058813513561, c2=0.021440833392886532 ...................
[CV]  c1=0.522058813513561, c2=0.021440833392886532, score=0.824600 -   1.1s
[CV] c1=0.01823519674096219, c2=0.048541546570036814 .................
[CV]  c1=0.01823519674096219, c2=0.048541546570036814, score=0.845520 -   1.0s
[CV] c1=0.47912115660780025, c2=0.042558987608590594 .................
[CV]  c1=0.47912115660780025, c2=0.042558987608590594, score=0.808018 -   1.1s
[CV] c1=0.15699671289133177, c2=0.005916106781166745 .................
[CV]  c1=0.15699671289133177, c2=0.005916106781166745, score=0.844048 -   1.1s
[CV] c1=0.3963052139293561, c2=0.001644913002610705 ..................
[CV]  c1=0.3963052139293561, c2=0.001644913002610705, score=0.817502 -   1.1s
[CV] c1=0.6938786556567085, c2=0.04247723911620038 ...................
[CV]  c1=0.6938786556567085, c2=0.04247723911620038, score=0.664345 -   0.9s
[CV] c1=0.6464797793269932, c2=0.005177028289247534 ..................
[CV]  c1=0.6464797793269932, c2=0.005177028289247534, score=0.690704 -   0.9s
[CV] c1=0.012907399266719896, c2=0.10586076163067398 .................
[CV]  c1=0.012907399266719896, c2=0.10586076163067398, score=0.813821 -   1.0s
[CV] c1=0.021240543071906298, c2=0.0005874533278475703 ...............
[CV]  c1=0.021240543071906298, c2=0.0005874533278475703, score=0.861687 -   1.0s
[CV] c1=0.19315385633023527, c2=0.02615099182751104 ..................
[CV]  c1=0.19315385633023527, c2=0.02615099182751104, score=0.797276 -   1.1s
[CV] c1=0.19591580609100734, c2=0.05748809643950051 ..................
[CV]  c1=0.19591580609100734, c2=0.05748809643950051, score=0.767539 -   1.1s
[CV] c1=0.006215968333772049, c2=0.0018628975239383555 ...............
[CV]  c1=0.006215968333772049, c2=0.0018628975239383555, score=0.853477 -   1.0s
[CV] c1=0.2864563496637691, c2=0.09620232551772682 ...................
[CV]  c1=0.2864563496637691, c2=0.09620232551772682, score=0.659964 -   1.0s
[CV] c1=0.7797225859093856, c2=0.00494104259400261 ...................
[CV]  c1=0.7797225859093856, c2=0.00494104259400261, score=0.685290 -   1.1s
[CV] c1=0.8174101996988045, c2=0.06954778929403152 ...................
[CV]  c1=0.8174101996988045, c2=0.06954778929403152, score=0.664556 -   1.1s
[CV] c1=0.7393384210184366, c2=0.013557344131307898 ..................
[CV]  c1=0.7393384210184366, c2=0.013557344131307898, score=0.823510 -   1.1s
[CV] c1=0.6663387372321942, c2=0.05081278019244946 ...................
[CV]  c1=0.6663387372321942, c2=0.05081278019244946, score=0.833119 -   1.0s
[CV] c1=0.234895921068376, c2=0.0825746191898628 .....................
[CV]  c1=0.234895921068376, c2=0.0825746191898628, score=0.880516 -   1.1s
[CV] c1=0.6771011407200376, c2=0.05393316391808095 ...................
[CV]  c1=0.6771011407200376, c2=0.05393316391808095, score=0.642515 -   0.9s
[CV] c1=0.3599653211638866, c2=0.005116412997909836 ..................
[CV]  c1=0.3599653211638866, c2=0.005116412997909836, score=0.874179 -   1.1s
[CV] c1=0.35323131605805247, c2=0.030647632640799217 .................
[CV]  c1=0.35323131605805247, c2=0.030647632640799217, score=0.870937 -   1.1s
[CV] c1=0.6779032915189199, c2=0.01670282951057246 ...................
[CV]  c1=0.6779032915189199, c2=0.01670282951057246, score=0.705220 -   1.1s
[CV] c1=0.05796176704795284, c2=0.040125522565763974 .................
[CV]  c1=0.05796176704795284, c2=0.040125522565763974, score=0.850049 -   1.0s
[CV] c1=0.4142231178840438, c2=0.05139789804626665 ...................
[CV]  c1=0.4142231178840438, c2=0.05139789804626665, score=0.730540 -   1.1s
[CV] c1=0.7067368768922709, c2=0.19213258417619444 ...................
[CV]  c1=0.7067368768922709, c2=0.19213258417619444, score=0.816999 -   1.1s
[CV] c1=0.6848313844281044, c2=0.0280340157578724 ....................
[CV]  c1=0.6848313844281044, c2=0.0280340157578724, score=0.760278 -   1.1s
[CV] c1=1.2290657383278605, c2=0.009006508580737356 ..................
[CV]  c1=1.2290657383278605, c2=0.009006508580737356, score=0.807508 -   1.1s
[CV] c1=0.37116598718275007, c2=0.04480010186885351 ..................
[CV]  c1=0.37116598718275007, c2=0.04480010186885351, score=0.865639 -   1.1s
[CV] c1=0.9774216223419709, c2=0.01677645289501469 ...................
[CV]  c1=0.9774216223419709, c2=0.01677645289501469, score=0.664556 -   1.1s
[CV] c1=0.049311118453307934, c2=0.05592388669047149 .................
[CV]  c1=0.049311118453307934, c2=0.05592388669047149, score=0.899689 -   1.1s
[CV] c1=0.42655387595367034, c2=0.027037053093833332 .................
[CV]  c1=0.42655387595367034, c2=0.027037053093833332, score=0.750566 -   1.1s
[CV] c1=0.7131549703291779, c2=0.0332797923053197 ....................
[CV]  c1=0.7131549703291779, c2=0.0332797923053197, score=0.642515 -   0.9s
[CV] c1=1.0583649953095466, c2=0.049482573325191126 ..................
[CV]  c1=1.0583649953095466, c2=0.049482573325191126, score=0.820471 -   0.8s
[CV] c1=0.08394544105288367, c2=0.156683236754706 ....................
[CV]  c1=0.08394544105288367, c2=0.156683236754706, score=0.664672 -   1.0s
[CV] c1=0.029937978879128732, c2=0.005520277915074975 ................
[CV]  c1=0.029937978879128732, c2=0.005520277915074975, score=0.892985 -   1.0s
[CV] c1=0.08808878502897181, c2=0.08234718187120992 ..................
[CV]  c1=0.08808878502897181, c2=0.08234718187120992, score=0.664245 -   0.9s
[CV] c1=0.006215968333772049, c2=0.0018628975239383555 ...............
[CV]  c1=0.006215968333772049, c2=0.0018628975239383555, score=0.739761 -   0.8s
[CV] c1=0.22952219430003895, c2=0.14494810749737363 ..................
[CV]  c1=0.22952219430003895, c2=0.14494810749737363, score=0.724530 -   1.2s
[CV] c1=0.2864031390018535, c2=0.04659408124203196 ...................
[CV]  c1=0.2864031390018535, c2=0.04659408124203196, score=0.884145 -   1.1s
[CV] c1=0.8174101996988045, c2=0.06954778929403152 ...................
[CV]  c1=0.8174101996988045, c2=0.06954778929403152, score=0.658690 -   1.2s
[CV] c1=0.00021873398074988694, c2=0.005098411484197325 ..............
[CV]  c1=0.00021873398074988694, c2=0.005098411484197325, score=0.732533 -   0.9s
[CV] c1=0.12599352615613874, c2=0.063782327956838 ....................
[CV]  c1=0.12599352615613874, c2=0.063782327956838, score=0.766527 -   1.2s
[CV] c1=0.938632330514135, c2=0.0021744236154997098 ..................
[CV]  c1=0.938632330514135, c2=0.0021744236154997098, score=0.830066 -   1.1s
[CV] c1=0.7596011960255612, c2=0.013429570209622385 ..................
[CV]  c1=0.7596011960255612, c2=0.013429570209622385, score=0.676101 -   0.8s
[CV] c1=0.3599653211638866, c2=0.005116412997909836 ..................
[CV]  c1=0.3599653211638866, c2=0.005116412997909836, score=0.835236 -   1.1s
[CV] c1=0.35323131605805247, c2=0.030647632640799217 .................
[CV]  c1=0.35323131605805247, c2=0.030647632640799217, score=0.763233 -   1.1s
[CV] c1=0.5210540897238904, c2=0.03868125061466162 ...................
[CV]  c1=0.5210540897238904, c2=0.03868125061466162, score=0.736589 -   1.1s
[CV] c1=0.03248779678022544, c2=0.05341150290559358 ..................
[CV]  c1=0.03248779678022544, c2=0.05341150290559358, score=0.847760 -   1.1s
[CV] c1=0.14098413760025477, c2=0.03389632521649788 ..................
[CV]  c1=0.14098413760025477, c2=0.03389632521649788, score=0.850522 -   1.0s
[CV] c1=0.7067368768922709, c2=0.19213258417619444 ...................
[CV]  c1=0.7067368768922709, c2=0.19213258417619444, score=0.647595 -   1.0s
[CV] c1=0.6848313844281044, c2=0.0280340157578724 ....................
[CV]  c1=0.6848313844281044, c2=0.0280340157578724, score=0.833119 -   1.1s
[CV] c1=1.4326633991238988, c2=0.01780960146566179 ...................
[CV]  c1=1.4326633991238988, c2=0.01780960146566179, score=0.542899 -   1.2s
[CV] c1=0.37116598718275007, c2=0.04480010186885351 ..................
[CV]  c1=0.37116598718275007, c2=0.04480010186885351, score=0.790867 -   1.1s
[CV] c1=0.12599352615613874, c2=0.063782327956838 ....................
[CV]  c1=0.12599352615613874, c2=0.063782327956838, score=0.668577 -   0.9s
[CV] c1=0.7491758853340312, c2=0.009638567399376016 ..................
[CV]  c1=0.7491758853340312, c2=0.009638567399376016, score=0.676101 -   0.9s
[CV] c1=0.19117283922751835, c2=0.06092555195887511 ..................
[CV]  c1=0.19117283922751835, c2=0.06092555195887511, score=0.761151 -   1.3s
[CV] c1=0.5477741605754481, c2=0.0014368432970399995 .................
[CV]  c1=0.5477741605754481, c2=0.0014368432970399995, score=0.726594 -   1.1s
[CV] c1=0.7832205821232678, c2=0.015848588019002834 ..................
[CV]  c1=0.7832205821232678, c2=0.015848588019002834, score=0.685167 -   1.2s
[CV] c1=0.19315385633023527, c2=0.02615099182751104 ..................
[CV]  c1=0.19315385633023527, c2=0.02615099182751104, score=0.782644 -   1.1s
[CV] c1=0.5376022708541929, c2=0.12198703506266317 ...................
[CV]  c1=0.5376022708541929, c2=0.12198703506266317, score=0.639429 -   0.9s
[CV] c1=0.14098413760025477, c2=0.03389632521649788 ..................
[CV]  c1=0.14098413760025477, c2=0.03389632521649788, score=0.772915 -   1.1s
[CV] c1=0.22952219430003895, c2=0.14494810749737363 ..................
[CV]  c1=0.22952219430003895, c2=0.14494810749737363, score=0.773487 -   1.0s
[CV] c1=0.7797225859093856, c2=0.00494104259400261 ...................
[CV]  c1=0.7797225859093856, c2=0.00494104259400261, score=0.738550 -   1.1s
[CV] c1=1.2290657383278605, c2=0.009006508580737356 ..................
[CV]  c1=1.2290657383278605, c2=0.009006508580737356, score=0.580454 -   1.1s
[CV] c1=0.3625029391050362, c2=0.061631559571731845 ..................
[CV]  c1=0.3625029391050362, c2=0.061631559571731845, score=0.742155 -   1.2s
[CV] c1=0.6663387372321942, c2=0.05081278019244946 ...................
[CV]  c1=0.6663387372321942, c2=0.05081278019244946, score=0.693313 -   1.1s
[CV] c1=0.234895921068376, c2=0.0825746191898628 .....................
[CV]  c1=0.234895921068376, c2=0.0825746191898628, score=0.799992 -   1.2s
[CV] c1=0.7596011960255612, c2=0.013429570209622385 ..................
[CV]  c1=0.7596011960255612, c2=0.013429570209622385, score=0.751511 -   1.1s
[CV] c1=0.012907399266719896, c2=0.10586076163067398 .................
[CV]  c1=0.012907399266719896, c2=0.10586076163067398, score=0.831762 -   0.9s
[CV] c1=1.0583649953095466, c2=0.049482573325191126 ..................
[CV]  c1=1.0583649953095466, c2=0.049482573325191126, score=0.572435 -   0.8s
[CV] c1=0.08394544105288367, c2=0.156683236754706 ....................
[CV]  c1=0.08394544105288367, c2=0.156683236754706, score=0.866955 -   1.2s
[CV] c1=0.029937978879128732, c2=0.005520277915074975 ................
[CV]  c1=0.029937978879128732, c2=0.005520277915074975, score=0.820986 -   1.1s
[CV] c1=0.08808878502897181, c2=0.08234718187120992 ..................
[CV]  c1=0.08808878502897181, c2=0.08234718187120992, score=0.810732 -   1.1s
[CV] c1=0.2676413952260135, c2=0.035382984021573624 ..................
[CV]  c1=0.2676413952260135, c2=0.035382984021573624, score=0.837696 -   1.1s
[CV] c1=0.27781845963558904, c2=0.04754844702300917 ..................
[CV]  c1=0.27781845963558904, c2=0.04754844702300917, score=0.800443 -   1.1s
[CV] c1=0.01823519674096219, c2=0.048541546570036814 .................
[CV]  c1=0.01823519674096219, c2=0.048541546570036814, score=0.669545 -   1.0s
[CV] c1=0.47912115660780025, c2=0.042558987608590594 .................
[CV]  c1=0.47912115660780025, c2=0.042558987608590594, score=0.858497 -   1.2s
[CV] c1=0.15699671289133177, c2=0.005916106781166745 .................
[CV]  c1=0.15699671289133177, c2=0.005916106781166745, score=0.794770 -   1.1s
[CV] c1=0.3963052139293561, c2=0.001644913002610705 ..................
[CV]  c1=0.3963052139293561, c2=0.001644913002610705, score=0.837696 -   1.1s
[CV] c1=0.08230962763616256, c2=0.10303604259774368 ..................
[CV]  c1=0.08230962763616256, c2=0.10303604259774368, score=0.799483 -   1.1s
[CV] c1=0.6464797793269932, c2=0.005177028289247534 ..................
[CV]  c1=0.6464797793269932, c2=0.005177028289247534, score=0.791160 -   1.1s
[CV] c1=0.1232982525559967, c2=0.07444707832983252 ...................
[CV]  c1=0.1232982525559967, c2=0.07444707832983252, score=0.664245 -   0.7s
[CV] c1=1.0583649953095466, c2=0.049482573325191126 ..................
[CV]  c1=1.0583649953095466, c2=0.049482573325191126, score=0.713277 -   1.0s
[CV] c1=0.5021681905536242, c2=0.03436716259404434 ...................
[CV]  c1=0.5021681905536242, c2=0.03436716259404434, score=0.861286 -   1.2s
[CV] c1=0.169997353321218, c2=0.0036601029645213392 ..................
[CV]  c1=0.169997353321218, c2=0.0036601029645213392, score=0.846508 -   1.1s
[CV] c1=0.01654084590846588, c2=0.04105834908143077 ..................
[CV]  c1=0.01654084590846588, c2=0.04105834908143077, score=0.805516 -   1.2s
[CV] c1=0.05963440269300229, c2=0.006122151516373232 .................
[CV]  c1=0.05963440269300229, c2=0.006122151516373232, score=0.847760 -   1.2s
[CV] c1=0.6848313844281044, c2=0.0280340157578724 ....................
[CV]  c1=0.6848313844281044, c2=0.0280340157578724, score=0.806016 -   1.1s
[CV] c1=1.2290657383278605, c2=0.009006508580737356 ..................
[CV]  c1=1.2290657383278605, c2=0.009006508580737356, score=0.653690 -   1.2s
[CV] c1=0.3625029391050362, c2=0.061631559571731845 ..................
[CV]  c1=0.3625029391050362, c2=0.061631559571731845, score=0.827057 -   1.0s
[CV] c1=0.12599352615613874, c2=0.063782327956838 ....................
[CV]  c1=0.12599352615613874, c2=0.063782327956838, score=0.801994 -   1.1s
[CV] c1=0.234895921068376, c2=0.0825746191898628 .....................
[CV]  c1=0.234895921068376, c2=0.0825746191898628, score=0.659964 -   0.9s
[CV] c1=0.42655387595367034, c2=0.027037053093833332 .................
[CV]  c1=0.42655387595367034, c2=0.027037053093833332, score=0.864732 -   1.1s
[CV] c1=0.3599653211638866, c2=0.005116412997909836 ..................
[CV]  c1=0.3599653211638866, c2=0.005116412997909836, score=0.764942 -   1.1s
[CV] c1=4.758265895631386e-05, c2=0.04085117838740492 ................
[CV]  c1=4.758265895631386e-05, c2=0.04085117838740492, score=0.899689 -   1.0s
[CV] c1=0.6779032915189199, c2=0.01670282951057246 ...................
[CV]  c1=0.6779032915189199, c2=0.01670282951057246, score=0.678025 -   0.9s
[CV] c1=0.169997353321218, c2=0.0036601029645213392 ..................
[CV]  c1=0.169997353321218, c2=0.0036601029645213392, score=0.792128 -   1.1s
[CV] c1=0.03760486438216704, c2=0.019882091835878954 .................
[CV]  c1=0.03760486438216704, c2=0.019882091835878954, score=0.823232 -   1.1s
[CV] c1=0.2247571244665834, c2=0.03907640704825807 ...................
[CV]  c1=0.2247571244665834, c2=0.03907640704825807, score=0.770090 -   1.1s
[CV] c1=0.6578187595472836, c2=0.007898361614430196 ..................
[CV]  c1=0.6578187595472836, c2=0.007898361614430196, score=0.687768 -   0.9s
[CV] c1=0.6358592021719194, c2=0.016919674820147782 ..................
[CV]  c1=0.6358592021719194, c2=0.016919674820147782, score=0.690704 -   0.9s
[CV] c1=0.47912115660780025, c2=0.042558987608590594 .................
[CV]  c1=0.47912115660780025, c2=0.042558987608590594, score=0.682186 -   0.8s
[CV] c1=0.7393384210184366, c2=0.013557344131307898 ..................
[CV]  c1=0.7393384210184366, c2=0.013557344131307898, score=0.682738 -   1.1s
[CV] c1=0.07110363454042393, c2=0.07272240129749212 ..................
[CV]  c1=0.07110363454042393, c2=0.07272240129749212, score=0.884459 -   1.1s
[CV] c1=0.938632330514135, c2=0.0021744236154997098 ..................
[CV]  c1=0.938632330514135, c2=0.0021744236154997098, score=0.785100 -   1.0s
[CV] c1=0.7596011960255612, c2=0.013429570209622385 ..................
[CV]  c1=0.7596011960255612, c2=0.013429570209622385, score=0.673435 -   1.1s
[CV] c1=0.012907399266719896, c2=0.10586076163067398 .................
[CV]  c1=0.012907399266719896, c2=0.10586076163067398, score=0.781051 -   1.0s
[CV] c1=0.021240543071906298, c2=0.0005874533278475703 ...............
[CV]  c1=0.021240543071906298, c2=0.0005874533278475703, score=0.795976 -   1.1s
[CV] c1=0.1143911144307279, c2=0.021785850868703948 ..................
[CV]  c1=0.1143911144307279, c2=0.021785850868703948, score=0.807249 -   1.1s
[CV] c1=0.08808878502897181, c2=0.08234718187120992 ..................
[CV]  c1=0.08808878502897181, c2=0.08234718187120992, score=0.884459 -   1.1s
[CV] c1=0.2676413952260135, c2=0.035382984021573624 ..................
[CV]  c1=0.2676413952260135, c2=0.035382984021573624, score=0.780641 -   1.1s
[CV] c1=0.27781845963558904, c2=0.04754844702300917 ..................
[CV]  c1=0.27781845963558904, c2=0.04754844702300917, score=0.832488 -   1.1s
[CV] c1=1.014770994949816, c2=0.19244795811541265 ....................
[CV]  c1=1.014770994949816, c2=0.19244795811541265, score=0.559932 -   1.1s
[CV] c1=0.0828408463649197, c2=0.0069691638323212506 .................
[CV]  c1=0.0828408463649197, c2=0.0069691638323212506, score=0.851307 -   1.0s
[CV] c1=0.00021873398074988694, c2=0.005098411484197325 ..............
[CV]  c1=0.00021873398074988694, c2=0.005098411484197325, score=0.828376 -   1.1s
[CV] c1=0.07110363454042393, c2=0.07272240129749212 ..................
[CV]  c1=0.07110363454042393, c2=0.07272240129749212, score=0.766899 -   1.1s
[CV] c1=0.08230962763616256, c2=0.10303604259774368 ..................
[CV]  c1=0.08230962763616256, c2=0.10303604259774368, score=0.891267 -   1.1s
[CV] c1=0.6464797793269932, c2=0.005177028289247534 ..................
[CV]  c1=0.6464797793269932, c2=0.005177028289247534, score=0.842522 -   1.1s
[CV] c1=3.4975663200975466, c2=0.012150842543697169 ..................
[CV]  c1=3.4975663200975466, c2=0.012150842543697169, score=0.500517 -   1.0s
[CV] c1=0.09144862722928117, c2=0.023121342687481623 .................
[CV]  c1=0.09144862722928117, c2=0.023121342687481623, score=0.895637 -   1.0s
[CV] c1=0.5021681905536242, c2=0.03436716259404434 ...................
[CV]  c1=0.5021681905536242, c2=0.03436716259404434, score=0.731192 -   1.2s
[CV] c1=0.3523589676716019, c2=0.12271906262803907 ...................
[CV]  c1=0.3523589676716019, c2=0.12271906262803907, score=0.713397 -   1.1s
[CV] c1=0.4142231178840438, c2=0.05139789804626665 ...................
[CV]  c1=0.4142231178840438, c2=0.05139789804626665, score=0.854857 -   1.1s
[CV] c1=0.05963440269300229, c2=0.006122151516373232 .................
[CV]  c1=0.05963440269300229, c2=0.006122151516373232, score=0.683305 -   0.9s
[CV] c1=0.16702486891322157, c2=0.08220109706861589 ..................
[CV]  c1=0.16702486891322157, c2=0.08220109706861589, score=0.877135 -   1.0s
[CV] c1=0.6358592021719194, c2=0.016919674820147782 ..................
[CV]  c1=0.6358592021719194, c2=0.016919674820147782, score=0.837220 -   1.1s
[CV] c1=0.3962317537235285, c2=0.027478672902279955 ..................
[CV]  c1=0.3962317537235285, c2=0.027478672902279955, score=0.761615 -   1.2s
[CV] c1=0.03632647795173988, c2=0.11097659361523925 ..................
[CV]  c1=0.03632647795173988, c2=0.11097659361523925, score=0.899464 -   1.1s
[CV] c1=1.0569360523895825, c2=0.014553013344968125 ..................
[CV]  c1=1.0569360523895825, c2=0.014553013344968125, score=0.612664 -   1.0s
[CV] c1=0.6938786556567085, c2=0.04247723911620038 ...................
[CV]  c1=0.6938786556567085, c2=0.04247723911620038, score=0.693233 -   1.1s
[CV] c1=0.2089818386535038, c2=0.02650135102731585 ...................
[CV]  c1=0.2089818386535038, c2=0.02650135102731585, score=0.870986 -   1.1s
[CV] c1=1.091677414736111, c2=0.053008109099429726 ...................
[CV]  c1=1.091677414736111, c2=0.053008109099429726, score=0.572435 -   0.7s
[CV] c1=0.28837444586675987, c2=0.13477556958121814 ..................
[CV]  c1=0.28837444586675987, c2=0.13477556958121814, score=0.658028 -   0.9s
[CV] c1=0.5210540897238904, c2=0.03868125061466162 ...................
[CV]  c1=0.5210540897238904, c2=0.03868125061466162, score=0.820241 -   1.0s
[CV] c1=0.03248779678022544, c2=0.05341150290559358 ..................
[CV]  c1=0.03248779678022544, c2=0.05341150290559358, score=0.683010 -   0.8s
[CV] c1=0.03760486438216704, c2=0.019882091835878954 .................
[CV]  c1=0.03760486438216704, c2=0.019882091835878954, score=0.899689 -   1.1s
[CV] c1=0.2247571244665834, c2=0.03907640704825807 ...................
[CV]  c1=0.2247571244665834, c2=0.03907640704825807, score=0.837696 -   1.1s
[CV] c1=0.6578187595472836, c2=0.007898361614430196 ..................
[CV]  c1=0.6578187595472836, c2=0.007898361614430196, score=0.851163 -   1.1s
[CV] c1=0.24107958240128294, c2=0.004200414730172063 .................
[CV]  c1=0.24107958240128294, c2=0.004200414730172063, score=0.903063 -   1.0s
[CV] c1=0.8095469589125729, c2=0.00697746985087485 ...................
[CV]  c1=0.8095469589125729, c2=0.00697746985087485, score=0.681389 -   1.2s
[CV] c1=0.11631566976799346, c2=0.012748291840920543 .................
[CV]  c1=0.11631566976799346, c2=0.012748291840920543, score=0.805677 -   1.1s
[CV] c1=0.45033243545986185, c2=0.06029654055920163 ..................
[CV]  c1=0.45033243545986185, c2=0.06029654055920163, score=0.783994 -   1.1s
[CV] c1=0.2278416914743745, c2=0.1102087607314831 ....................
[CV]  c1=0.2278416914743745, c2=0.1102087607314831, score=0.659964 -   0.9s
[CV] c1=0.2089818386535038, c2=0.02650135102731585 ...................
[CV]  c1=0.2089818386535038, c2=0.02650135102731585, score=0.668577 -   0.9s
[CV] c1=3.4975663200975466, c2=0.012150842543697169 ..................
[CV]  c1=3.4975663200975466, c2=0.012150842543697169, score=0.416208 -   0.9s
[CV] c1=4.758265895631386e-05, c2=0.04085117838740492 ................
[CV]  c1=4.758265895631386e-05, c2=0.04085117838740492, score=0.847760 -   1.1s
[CV] c1=0.6296162101633775, c2=0.017986059951393695 ..................
[CV]  c1=0.6296162101633775, c2=0.017986059951393695, score=0.687768 -   0.8s
[CV] c1=0.3523589676716019, c2=0.12271906262803907 ...................
[CV]  c1=0.3523589676716019, c2=0.12271906262803907, score=0.777850 -   1.2s
[CV] c1=0.14098413760025477, c2=0.03389632521649788 ..................
[CV]  c1=0.14098413760025477, c2=0.03389632521649788, score=0.877962 -   1.1s
[CV] c1=0.7067368768922709, c2=0.19213258417619444 ...................
[CV]  c1=0.7067368768922709, c2=0.19213258417619444, score=0.567868 -   0.9s
[CV] c1=0.6578187595472836, c2=0.007898361614430196 ..................
[CV]  c1=0.6578187595472836, c2=0.007898361614430196, score=0.724202 -   1.1s
[CV] c1=1.4326633991238988, c2=0.01780960146566179 ...................
[CV]  c1=1.4326633991238988, c2=0.01780960146566179, score=0.799210 -   1.1s
[CV] c1=0.686280166321115, c2=0.05303923054196025 ....................
[CV]  c1=0.686280166321115, c2=0.05303923054196025, score=0.642515 -   0.8s
[CV] c1=0.3013745733172885, c2=0.03853396314530322 ...................
[CV]  c1=0.3013745733172885, c2=0.03853396314530322, score=0.797858 -   1.1s
[CV] c1=1.0569360523895825, c2=0.014553013344968125 ..................
[CV]  c1=1.0569360523895825, c2=0.014553013344968125, score=0.664556 -   1.1s
[CV] c1=0.19117283922751835, c2=0.06092555195887511 ..................
[CV]  c1=0.19117283922751835, c2=0.06092555195887511, score=0.809696 -   1.1s
[CV] c1=0.2815044616814552, c2=0.10764004675667396 ...................
[CV]  c1=0.2815044616814552, c2=0.10764004675667396, score=0.659964 -   0.9s
[CV] c1=1.091677414736111, c2=0.053008109099429726 ...................
[CV]  c1=1.091677414736111, c2=0.053008109099429726, score=0.660853 -   0.8s
[CV] c1=0.49900426869297615, c2=0.10341430147097004 ..................
[CV]  c1=0.49900426869297615, c2=0.10341430147097004, score=0.642515 -   0.7s
[CV] c1=0.08394544105288367, c2=0.156683236754706 ....................
[CV]  c1=0.08394544105288367, c2=0.156683236754706, score=0.796107 -   1.1s
[CV] c1=0.029937978879128732, c2=0.005520277915074975 ................
[CV]  c1=0.029937978879128732, c2=0.005520277915074975, score=0.825938 -   1.0s
[CV] c1=0.08808878502897181, c2=0.08234718187120992 ..................
[CV]  c1=0.08808878502897181, c2=0.08234718187120992, score=0.777273 -   1.2s
[CV] c1=0.2676413952260135, c2=0.035382984021573624 ..................
[CV]  c1=0.2676413952260135, c2=0.035382984021573624, score=0.797090 -   1.2s
[CV] c1=0.522058813513561, c2=0.021440833392886532 ...................
[CV]  c1=0.522058813513561, c2=0.021440833392886532, score=0.861286 -   1.1s
[CV] c1=0.01823519674096219, c2=0.048541546570036814 .................
[CV]  c1=0.01823519674096219, c2=0.048541546570036814, score=0.824158 -   1.2s
[CV] c1=0.3962317537235285, c2=0.027478672902279955 ..................
[CV]  c1=0.3962317537235285, c2=0.027478672902279955, score=0.866839 -   1.1s
[CV] c1=0.3013745733172885, c2=0.03853396314530322 ...................
[CV]  c1=0.3013745733172885, c2=0.03853396314530322, score=0.663591 -   0.9s
[CV] c1=0.3963052139293561, c2=0.001644913002610705 ..................
[CV]  c1=0.3963052139293561, c2=0.001644913002610705, score=0.804324 -   1.1s
[CV] c1=0.08230962763616256, c2=0.10303604259774368 ..................
[CV]  c1=0.08230962763616256, c2=0.10303604259774368, score=0.790908 -   1.2s
[CV] c1=0.14171914762096757, c2=0.03753534075742085 ..................
[CV]  c1=0.14171914762096757, c2=0.03753534075742085, score=0.821480 -   1.1s
[CV] c1=0.1232982525559967, c2=0.07444707832983252 ...................
[CV]  c1=0.1232982525559967, c2=0.07444707832983252, score=0.811679 -   0.9s
[CV] c1=0.49900426869297615, c2=0.10341430147097004 ..................
[CV]  c1=0.49900426869297615, c2=0.10341430147097004, score=0.835989 -   1.1s
[CV] c1=0.5021681905536242, c2=0.03436716259404434 ...................
[CV]  c1=0.5021681905536242, c2=0.03436716259404434, score=0.772137 -   1.2s
[CV] c1=0.05796176704795284, c2=0.040125522565763974 .................
[CV]  c1=0.05796176704795284, c2=0.040125522565763974, score=0.664006 -   0.9s
[CV] c1=0.03760486438216704, c2=0.019882091835878954 .................
[CV]  c1=0.03760486438216704, c2=0.019882091835878954, score=0.685083 -   0.8s
[CV] c1=1.4577491041183357, c2=0.010276123631101227 ..................
[CV]  c1=1.4577491041183357, c2=0.010276123631101227, score=0.560168 -   0.9s
[CV] c1=0.27781845963558904, c2=0.04754844702300917 ..................
[CV]  c1=0.27781845963558904, c2=0.04754844702300917, score=0.661368 -   0.9s
[CV] c1=0.2864031390018535, c2=0.04659408124203196 ...................
[CV]  c1=0.2864031390018535, c2=0.04659408124203196, score=0.767539 -   1.1s
[CV] c1=0.21681786748339343, c2=0.02164295860302985 ..................
[CV]  c1=0.21681786748339343, c2=0.02164295860302985, score=0.805432 -   1.1s
[CV] c1=0.00021873398074988694, c2=0.005098411484197325 ..............
[CV]  c1=0.00021873398074988694, c2=0.005098411484197325, score=0.862165 -   1.1s
[CV] c1=0.07110363454042393, c2=0.07272240129749212 ..................
[CV]  c1=0.07110363454042393, c2=0.07272240129749212, score=0.813821 -   1.1s
[CV] c1=0.938632330514135, c2=0.0021744236154997098 ..................
[CV]  c1=0.938632330514135, c2=0.0021744236154997098, score=0.672374 -   1.2s
[CV] c1=0.6464797793269932, c2=0.005177028289247534 ..................
[CV]  c1=0.6464797793269932, c2=0.005177028289247534, score=0.793666 -   1.0s
[CV] c1=3.4975663200975466, c2=0.012150842543697169 ..................
[CV]  c1=3.4975663200975466, c2=0.012150842543697169, score=0.465130 -   0.9s
[CV] c1=0.021240543071906298, c2=0.0005874533278475703 ...............
[CV]  c1=0.021240543071906298, c2=0.0005874533278475703, score=0.720959 -   0.9s
[CV] c1=0.5210540897238904, c2=0.03868125061466162 ...................
[CV]  c1=0.5210540897238904, c2=0.03868125061466162, score=0.678560 -   0.9s
[CV] c1=0.3523589676716019, c2=0.12271906262803907 ...................
[CV]  c1=0.3523589676716019, c2=0.12271906262803907, score=0.652118 -   0.8s
[CV] c1=0.01654084590846588, c2=0.04105834908143077 ..................
[CV]  c1=0.01654084590846588, c2=0.04105834908143077, score=0.684815 -   0.8s
[CV] c1=0.2676413952260135, c2=0.035382984021573624 ..................
[CV]  c1=0.2676413952260135, c2=0.035382984021573624, score=0.660714 -   0.9s
[CV] c1=0.0894483106041027, c2=0.045689939359832316 ..................
[CV]  c1=0.0894483106041027, c2=0.045689939359832316, score=0.672408 -   0.9s
[CV] c1=0.7797225859093856, c2=0.00494104259400261 ...................
[CV]  c1=0.7797225859093856, c2=0.00494104259400261, score=0.833826 -   1.0s
[CV] c1=1.4326633991238988, c2=0.01780960146566179 ...................
[CV]  c1=1.4326633991238988, c2=0.01780960146566179, score=0.560168 -   0.9s
[CV] c1=0.8095469589125729, c2=0.00697746985087485 ...................
[CV]  c1=0.8095469589125729, c2=0.00697746985087485, score=0.676101 -   0.8s
[CV] c1=0.15699671289133177, c2=0.005916106781166745 .................
[CV]  c1=0.15699671289133177, c2=0.005916106781166745, score=0.821528 -   1.1s
[CV] c1=0.13998842827964883, c2=0.10614050841815473 ..................
[CV]  c1=0.13998842827964883, c2=0.10614050841815473, score=0.871808 -   1.1s
[CV] c1=0.6938786556567085, c2=0.04247723911620038 ...................
[CV]  c1=0.6938786556567085, c2=0.04247723911620038, score=0.827218 -   1.1s
[CV] c1=0.14171914762096757, c2=0.03753534075742085 ..................
[CV]  c1=0.14171914762096757, c2=0.03753534075742085, score=0.886280 -   1.1s
[CV] c1=0.1232982525559967, c2=0.07444707832983252 ...................
[CV]  c1=0.1232982525559967, c2=0.07444707832983252, score=0.884459 -   0.8s
[CV] c1=0.28837444586675987, c2=0.13477556958121814 ..................
[CV]  c1=0.28837444586675987, c2=0.13477556958121814, score=0.775210 -   1.0s
[CV] c1=0.1143911144307279, c2=0.021785850868703948 ..................
[CV]  c1=0.1143911144307279, c2=0.021785850868703948, score=0.880632 -   1.1s
[CV] c1=0.5376022708541929, c2=0.12198703506266317 ...................
[CV]  c1=0.5376022708541929, c2=0.12198703506266317, score=0.835060 -   1.0s
[CV] c1=0.14699040114361245, c2=0.006873039354974641 .................
[CV]  c1=0.14699040114361245, c2=0.006873039354974641, score=0.826048 -   1.1s
[CV] c1=0.2864563496637691, c2=0.09620232551772682 ...................
[CV]  c1=0.2864563496637691, c2=0.09620232551772682, score=0.783349 -   1.1s
[CV] c1=1.014770994949816, c2=0.19244795811541265 ....................
[CV]  c1=1.014770994949816, c2=0.19244795811541265, score=0.770889 -   1.1s
[CV] c1=0.0828408463649197, c2=0.0069691638323212506 .................
[CV]  c1=0.0828408463649197, c2=0.0069691638323212506, score=0.889064 -   1.1s
[CV] c1=0.00021873398074988694, c2=0.005098411484197325 ..............
[CV]  c1=0.00021873398074988694, c2=0.005098411484197325, score=0.850433 -   1.0s
[CV] c1=0.07110363454042393, c2=0.07272240129749212 ..................
[CV]  c1=0.07110363454042393, c2=0.07272240129749212, score=0.676534 -   0.8s
[CV] c1=0.049311118453307934, c2=0.05592388669047149 .................
[CV]  c1=0.049311118453307934, c2=0.05592388669047149, score=0.676534 -   0.9s
[CV] c1=0.51062298498198, c2=0.07177190020751281 .....................
[CV]  c1=0.51062298498198, c2=0.07177190020751281, score=0.715371 -   1.1s
[CV] c1=0.5477741605754481, c2=0.0014368432970399995 .................
[CV]  c1=0.5477741605754481, c2=0.0014368432970399995, score=0.696758 -   0.9s
[CV] c1=1.091677414736111, c2=0.053008109099429726 ...................
[CV]  c1=1.091677414736111, c2=0.053008109099429726, score=0.713277 -   0.7s
[CV] c1=0.49900426869297615, c2=0.10341430147097004 ..................
[CV]  c1=0.49900426869297615, c2=0.10341430147097004, score=0.732467 -   0.9s
[CV] c1=0.08394544105288367, c2=0.156683236754706 ....................
[CV]  c1=0.08394544105288367, c2=0.156683236754706, score=0.780599 -   1.1s
[CV] c1=0.169997353321218, c2=0.0036601029645213392 ..................
[CV]  c1=0.169997353321218, c2=0.0036601029645213392, score=0.898314 -   1.1s
[CV] c1=0.01654084590846588, c2=0.04105834908143077 ..................
[CV]  c1=0.01654084590846588, c2=0.04105834908143077, score=0.824158 -   1.1s
[CV] c1=0.2247571244665834, c2=0.03907640704825807 ...................
[CV]  c1=0.2247571244665834, c2=0.03907640704825807, score=0.882561 -   1.1s
[CV] c1=0.16702486891322157, c2=0.08220109706861589 ..................
[CV]  c1=0.16702486891322157, c2=0.08220109706861589, score=0.664245 -   0.9s
[CV] c1=0.01823519674096219, c2=0.048541546570036814 .................
[CV]  c1=0.01823519674096219, c2=0.048541546570036814, score=0.899689 -   1.1s
[CV] c1=0.47912115660780025, c2=0.042558987608590594 .................
[CV]  c1=0.47912115660780025, c2=0.042558987608590594, score=0.723864 -   1.2s
[CV] c1=0.3013745733172885, c2=0.03853396314530322 ...................
[CV]  c1=0.3013745733172885, c2=0.03853396314530322, score=0.879832 -   1.1s
[CV] c1=0.13998842827964883, c2=0.10614050841815473 ..................
[CV]  c1=0.13998842827964883, c2=0.10614050841815473, score=0.803909 -   1.0s
[CV] c1=0.6938786556567085, c2=0.04247723911620038 ...................
[CV]  c1=0.6938786556567085, c2=0.04247723911620038, score=0.791575 -   1.0s
[CV] c1=0.14171914762096757, c2=0.03753534075742085 ..................
[CV]  c1=0.14171914762096757, c2=0.03753534075742085, score=0.801994 -   1.1s
[CV] c1=0.1232982525559967, c2=0.07444707832983252 ...................
[CV]  c1=0.1232982525559967, c2=0.07444707832983252, score=0.797132 -   0.9s
[CV] c1=0.09144862722928117, c2=0.023121342687481623 .................
[CV]  c1=0.09144862722928117, c2=0.023121342687481623, score=0.840721 -   1.1s
[CV] c1=0.6779032915189199, c2=0.01670282951057246 ...................
[CV]  c1=0.6779032915189199, c2=0.01670282951057246, score=0.838156 -   1.1s
[CV] c1=0.05796176704795284, c2=0.040125522565763974 .................
[CV]  c1=0.05796176704795284, c2=0.040125522565763974, score=0.830028 -   1.1s
[CV] c1=0.4142231178840438, c2=0.05139789804626665 ...................
[CV]  c1=0.4142231178840438, c2=0.05139789804626665, score=0.796366 -   1.1s
[CV] c1=0.7067368768922709, c2=0.19213258417619444 ...................
[CV]  c1=0.7067368768922709, c2=0.19213258417619444, score=0.661819 -   1.1s
[CV] c1=0.6848313844281044, c2=0.0280340157578724 ....................
[CV]  c1=0.6848313844281044, c2=0.0280340157578724, score=0.698566 -   1.1s
[CV] c1=1.4326633991238988, c2=0.01780960146566179 ...................
[CV]  c1=1.4326633991238988, c2=0.01780960146566179, score=0.679197 -   1.1s
[CV] c1=0.37116598718275007, c2=0.04480010186885351 ..................
[CV]  c1=0.37116598718275007, c2=0.04480010186885351, score=0.832488 -   1.0s
[CV] c1=0.9774216223419709, c2=0.01677645289501469 ...................
[CV]  c1=0.9774216223419709, c2=0.01677645289501469, score=0.621244 -   0.9s
[CV] c1=1.0569360523895825, c2=0.014553013344968125 ..................
[CV]  c1=1.0569360523895825, c2=0.014553013344968125, score=0.633684 -   1.1s
[CV] c1=0.51062298498198, c2=0.07177190020751281 .....................
[CV]  c1=0.51062298498198, c2=0.07177190020751281, score=0.652118 -   0.8s
[CV] c1=0.14171914762096757, c2=0.03753534075742085 ..................
[CV]  c1=0.14171914762096757, c2=0.03753534075742085, score=0.772915 -   1.1s
[CV] c1=1.091677414736111, c2=0.053008109099429726 ...................
[CV]  c1=1.091677414736111, c2=0.053008109099429726, score=0.810998 -   0.8s
[CV] c1=4.758265895631386e-05, c2=0.04085117838740492 ................
[CV]  c1=4.758265895631386e-05, c2=0.04085117838740492, score=0.817505 -   1.1s
[CV] c1=0.5210540897238904, c2=0.03868125061466162 ...................
[CV]  c1=0.5210540897238904, c2=0.03868125061466162, score=0.772137 -   1.1s
[CV] c1=0.19591580609100734, c2=0.05748809643950051 ..................
[CV]  c1=0.19591580609100734, c2=0.05748809643950051, score=0.765657 -   1.2s
[CV] c1=0.006215968333772049, c2=0.0018628975239383555 ...............
[CV]  c1=0.006215968333772049, c2=0.0018628975239383555, score=0.758523 -   1.1s
[CV] c1=0.27781845963558904, c2=0.04754844702300917 ..................
[CV]  c1=0.27781845963558904, c2=0.04754844702300917, score=0.761689 -   1.1s
[CV] c1=1.014770994949816, c2=0.19244795811541265 ....................
[CV]  c1=1.014770994949816, c2=0.19244795811541265, score=0.598400 -   1.1s
[CV] c1=0.0828408463649197, c2=0.0069691638323212506 .................
[CV]  c1=0.0828408463649197, c2=0.0069691638323212506, score=0.768454 -   1.1s
[CV] c1=0.15699671289133177, c2=0.005916106781166745 .................
[CV]  c1=0.15699671289133177, c2=0.005916106781166745, score=0.886846 -   1.1s
[CV] c1=0.3963052139293561, c2=0.001644913002610705 ..................
[CV]  c1=0.3963052139293561, c2=0.001644913002610705, score=0.876030 -   1.1s
[CV] c1=0.08230962763616256, c2=0.10303604259774368 ..................
[CV]  c1=0.08230962763616256, c2=0.10303604259774368, score=0.770375 -   1.1s
[CV] c1=0.6464797793269932, c2=0.005177028289247534 ..................
[CV]  c1=0.6464797793269932, c2=0.005177028289247534, score=0.725482 -   1.2s
[CV] c1=0.1232982525559967, c2=0.07444707832983252 ...................
[CV]  c1=0.1232982525559967, c2=0.07444707832983252, score=0.766223 -   1.0s
[CV] c1=0.09144862722928117, c2=0.023121342687481623 .................
[CV]  c1=0.09144862722928117, c2=0.023121342687481623, score=0.766527 -   1.2s
[CV] c1=0.5210540897238904, c2=0.03868125061466162 ...................
[CV]  c1=0.5210540897238904, c2=0.03868125061466162, score=0.858497 -   1.1s
[CV] c1=1.1522689597276334, c2=0.049847336710477 .....................
[CV]  c1=1.1522689597276334, c2=0.049847336710477, score=0.784969 -   1.1s
[CV] c1=0.25299059230631105, c2=0.025960207756576894 .................
[CV]  c1=0.25299059230631105, c2=0.025960207756576894, score=0.837696 -   1.0s
[CV] c1=0.22952219430003895, c2=0.14494810749737363 ..................
[CV]  c1=0.22952219430003895, c2=0.14494810749737363, score=0.776422 -   1.2s
[CV] c1=0.4385737435744184, c2=0.07185833429263476 ...................
[CV]  c1=0.4385737435744184, c2=0.07185833429263476, score=0.846801 -   1.1s
[CV] c1=0.21681786748339343, c2=0.02164295860302985 ..................
[CV]  c1=0.21681786748339343, c2=0.02164295860302985, score=0.840258 -   1.1s
[CV] c1=0.7393384210184366, c2=0.013557344131307898 ..................
[CV]  c1=0.7393384210184366, c2=0.013557344131307898, score=0.791575 -   1.0s
[CV] c1=0.6663387372321942, c2=0.05081278019244946 ...................
[CV]  c1=0.6663387372321942, c2=0.05081278019244946, score=0.772227 -   1.1s
[CV] c1=0.938632330514135, c2=0.0021744236154997098 ..................
[CV]  c1=0.938632330514135, c2=0.0021744236154997098, score=0.675864 -   1.1s
[CV] c1=0.7596011960255612, c2=0.013429570209622385 ..................
[CV]  c1=0.7596011960255612, c2=0.013429570209622385, score=0.750577 -   1.1s
[CV] c1=3.4975663200975466, c2=0.012150842543697169 ..................
[CV]  c1=3.4975663200975466, c2=0.012150842543697169, score=0.548240 -   1.0s
Training done in: 15.282149s
     Saving training model...
        Saving training model done in: 0.013438s
*********************************
Prediction done in: 0.023419s