mapping2MCO_v5.py
15.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# -*- coding: utf-8 -*-
"""
#Setup
"""
#################### Setup ####################
from optparse import OptionParser
import os
from numpy.core.fromnumeric import sort
from pandas import read_csv, DataFrame, merge, concat, read_table
from numpy import exp, nan
import seaborn as sns
from numpy import mean
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
# %matplotlib inline
from collections import Counter, defaultdict
import json
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
#import format_fun
import format_fun_v6 as format_fun
import mapping_fun
import sys
"""
# input parameters
--inputPath /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/input/
--iAnnotatedFile srr_IV_model_Run3_v10_S1_False_S2_True_S3_False_S4_False_Run3_v10_named.tsv
--iOntoFile gc_ontology_terms_v2.txt
--iLinksFile gc_ontology_terms_link_v2.txt
--iSynFile mco_terms_v0.2.json
--outputPath /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/output/
--outputFile all_srr_IV_mapped.tsv
--minPerMatch 90
#Example
# nohup python3 /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/bin/mapping2MCO_v5.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/input/ --iAnnotatedFile srr_htregulondb_model_Run3_v10_S1_False_S2_True_S3_False_S4_False_Run3_v10.tsv --iOntoFile gc_ontology_terms_v2.txt --iSynFile mco_terms_v0.2.json --outputPath /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/output/v2/ --outputFile srr_htregulondb_v2.tsv --minPerMatch 80 --minCRFProbs 0.9 > /home/egaytan/automatic-extraction-growth-conditions/mapping_MCO/output/v2/srr_htregulondb_mapping_report_v2.out &
"""
#################### Defining parameters ####################
if __name__ == "__main__":
parser = OptionParser()
parser.add_option(
"--inputPath",
dest="input_path",
help="Path of npl tagged file (crf output)",
metavar="PATH")
parser.add_option(
"--iAnnotatedFile",
dest="npl_fname",
help="Input file of npl tagged file (crf output)",
metavar="FILE",
default="")
parser.add_option(
"--iOntoFile",
dest="onto_fname",
help="Input file with the ontology entities",
metavar="FILE",
default="")
parser.add_option(
"--iLinksFile",
dest="links_fname",
help="Input file with links and id for the ontology",
metavar="FILE",
default=None)
parser.add_option(
"--iSynFile",
dest="syn_fname",
help="Input file for the additional ontology of synonyms",
metavar="FILE",
default=None)
parser.add_option(
"--outputPath",
dest="output_path",
help="Output path to place output files",
metavar="PATH")
parser.add_option(
"--outputFile",
dest="out_fname",
help="Output file name for the mapping process",
metavar="FILE",
default="")
parser.add_option(
"--minPerMatch",
dest="min_score",
help="Minimal string matching percentage")
parser.add_option(
"--minCRFProbs",
dest="min_probs",
help="Minimal crf probabilities")
(options, args) = parser.parse_args()
if len(args) > 0:
parser.error("Any parameter given.")
sys.exit(1)
#################### DISP PARAMETERS ####################
print('\n\n-------------------------------- PARAMETERS --------------------------------\n')
print("--inputPath Path of npl tagged file: " + str(options.input_path))
print("--iAnnotatedFile Input file of npl tagged file: " + str(options.npl_fname))
print("--iOntoFile Input file with the ontology entities (MCO-terms): " + str(options.onto_fname))
print("--iLinksFile Input file with links and id for the ontology (MCO-type-links): " + str(options.links_fname))
print("--iSynFile Input file for the additional ontology of synonyms (MCO-syn-json): " + str(options.syn_fname))
print("--outputPath Output path to place output files: " + str(options.output_path))
print("--outputFile Output of the mapping process: " + str(options.out_fname))
print("--minPerMatch Minimal string matching percentage: " + str(options.min_score))
print("--minCRFProbs Minimal crf probabilities allowed: " + str(options.min_probs))
print("\n\n")
repognrl = "http://pakal.ccg.unam.mx/cmendezc"
reponame = "automatic-extraction-growth-conditions/tree/master/extraction-geo/download/srr_htregulondb"
repo_url = '/'.join([repognrl,reponame])
# Input files ========================================================================================
min_score = int(options.min_score)
min_probs = float(options.min_probs)
npl_ifile = os.path.join(options.input_path, options.npl_fname)
mco_ifile = os.path.join(options.input_path, options.onto_fname)
mco_syn_ifile = os.path.join(options.input_path, options.syn_fname)
# Output files =======================================================================================
#Save by mapping stratergy
raw_ofname = "_".join(["raw", options.out_fname])
rawmap_ofile = os.path.join(options.output_path, raw_ofname)
str_ofname = "_".join(["sim", options.out_fname])
strmap_ofile = os.path.join(options.output_path, str_ofname)
#Saving map und unmap
full_map_ofile = os.path.join(options.output_path, "full_map_"+options.out_fname)
full_unmap_ofile = os.path.join(options.output_path, "full_unmap_"+options.out_fname)
#Save JSONs
json_ofile = os.path.join(options.output_path, options.out_fname)
json_ofile_map = json_ofile.replace(".tsv", "_map.json")
json_ofile_unmap= json_ofile.replace(".tsv", "_unmap.json")
json_ofile_full = json_ofile.replace(".tsv", "_full.json")
# Load input data ====================================================================================
#Columns for the NPL-CRF extraction
exp_cols = {"SRR", "GSE", "GSM", "GPL", "PMID", "FULL_TEXT", "BANGLINE", "TERM_NAME", "TERM_TYPE", "PROB"}
#Load CRF-annotation
npl_full = read_table(npl_ifile, sep = "\t")
#Check input
obs_cols = set(npl_full.columns)
if exp_cols.intersection(obs_cols) != exp_cols:
ocol = ", ".join(list(exp_cols))
sys.exit(ocol + " expected columns for iAnnotatedFile" )
#Filter Input by probs
npl_df = npl_full[npl_full.PROB >= min_probs]
npl_df = npl_df.drop_duplicates(keep="first")
npl_df = npl_df.dropna()
#Cleaning input
npl_df['TERM_TYPE'] = [mapping_fun.transterm_npl2mco(term) for term in npl_df.TERM_TYPE]
#filter non-mco terms types
npl_df = npl_df[npl_df.TERM_TYPE != "exTag Type"]
#add repofile_ source. access to stored files at gitLab
source_access = ['/'.join([repo_url,gse,gse+'.soft.gz']) for gse in npl_df['GSE']]
npl_df['REPO_FILE'] = source_access
##remove additional spaces
npl_df['TERM_NAME'] = [txt.strip() for txt in npl_df['TERM_NAME']]
npl_df['PMID'] = [pmid.replace("PMID_", "") for pmid in npl_df['PMID']]
#Columns for MCO
exp_cols = {"TERM_ID", "TERM_NAME"}
#Load MCO term names
mco_df_full = read_table(mco_ifile, sep = "\t")
#Check input MCO
obs_cols = set(mco_df_full.columns)
if exp_cols.intersection(obs_cols) != exp_cols:
sys.exit("\"TERM_ID\" and \"TERM_NAME\" expected columns for iOntoFile" )
#Clean MCO input
mco_df = mco_df_full[["TERM_ID","TERM_NAME"]]
mco_df = mco_df.drop_duplicates(keep="first")
mco_df = mco_df.dropna()
#Load MCO links
if options.links_fname is not None:
print("\nLoad types...")
mcolink_ifile = os.path.join(options.input_path, options.links_fname)
exp_cols = {"TERM_ID", "TERM_TYPE"}
mco_links_full = read_table(mcolink_ifile, sep = "\t")
obs_cols = set(mco_links_full.columns)
if exp_cols.intersection(obs_cols) != exp_cols:
sys.exit("at least \"TERM_ID\" and \"TERM_TYPE\" expected columns for iLinksFile" )
mco_links = mco_links_full[["TERM_ID", "TERM_TYPE"]]
mco_links = mco_links.drop_duplicates(keep="first")
mco_links = mco_links.dropna()
else:
mco_links = None
#Load MCO terms synonyms
mco_json = open(mco_syn_ifile )
#format json from mco to dataframe
data = json.load(mco_json)
mco_syn = format_fun.json2DataFrame(data)
print('\n\n-------------------------------- INPUTS --------------------------------\n')
print("\nnpl tagged file\n")
print(npl_df.head(3))
print("\nontology entities\n")
print(mco_df.head(3))
if options.links_fname is not None:
print("\nlinks and id for the ontology (MCO-type-links)\n")
print(mco_links.head(3))
print("\nadditional ontology of synonyms (MCO-syn-json)\n")
print(mco_syn.head(3))
print('\n\n-------------------------------- RESULTS --------------------------------\n')
#################### mappping to MCO exact string ####################
#npl_df = npl_df.drop_duplicates("TERM_NAME", keep="first")
#npl_df = npl_df.head(10)
print("\nTracking exact terms to MCO...")
print(f"\nMapping {len(npl_df.index)} terms to MCO based on exact strings...")
#Exact mapping to MCO
raw_matches = mapping_fun.raw_map_mco(
npl_df = npl_df,
mco_df = mco_df,
mco_links = mco_links,
unmap = True)
#save file name source of the raw mapping
raw_matches["SOURCE"] = mco_ifile
#additional column to merge
raw_matches["ENTITY_NAME"] = ""
#################### mappping to MCO.syn exact string ####################
#define unmapped
raw_mco_unmap = raw_matches[raw_matches.isna().TERM_ID]
#input for te second step
raw_mco_unmap = raw_mco_unmap[list(npl_df.columns)]
print(f"\nMapping {len(raw_mco_unmap.index)} terms to MCO - synonyms based on exact strings...\n")
#exact mapping to synonims
raw_matches_syn = mapping_fun.raw_map_mco(
npl_df = raw_mco_unmap,
mco_df = mco_syn,
unmap = True)
#additional column to merge
raw_matches_syn["SOURCE"] = mco_syn_ifile
#raw_matches_syn["TERM_TYPE"] = ""
#################### save mapped terms based on exact strings ####################
#all mapped
raw_map_odf = concat(
[raw_matches, raw_matches_syn],
sort=True).dropna()
#print(raw_map_odf.head(3))
print(f"Total of terms mapped by exact strings: {len(raw_map_odf.index)}")
print("Saving filtered terms from raw mapping...\n\n")
raw_map_odf.to_csv(
rawmap_ofile,
sep = "\t",
header =True,
index=False)
#################### unmmaped raw terms ####################
raw_mco_syn_unmap = raw_matches_syn[raw_matches_syn.isna().TERM_ID]
raw_mco_syn_unmap = raw_mco_syn_unmap[list(npl_df.columns)]
print(f"{len(raw_mco_syn_unmap.index)} unmapped terms based on exact strings")
print("Dropping duplicated unmapped term names...")
raw_mco_syn_unmap = raw_mco_syn_unmap.drop_duplicates("TERM_NAME")
print(f"{len(raw_mco_syn_unmap.index)} unmapped unique terms based on exact strings")
#################### string similarity mapping ####################
###Matching unmaped terms by string similarity
print("\ncompute string similarty...")
print(f"\nMapping to MCO {len(raw_mco_syn_unmap.index)} terms based on string similarity...")
str_matches = mapping_fun.str_match_map_mco(
raw_mco_syn_unmap, mco_df,
mco_links = mco_links,
min_match=0,
npl_merges=False)
str_matches_odf = str_matches[str_matches.SET >= min_score]
str_matches_odf["SOURCE"] = mco_ifile
#################### unmmaped sim terms (MCO) ####################
str_mco_unmap = str_matches[str_matches.SET < min_score]
#str_mco_unmap = str_mco_unmap[list(npl_df.columns)]
str_mco_unmap = str_mco_unmap.drop_duplicates("TERM_NAME")
print(f"\nMapping to MCO - synonyms {len(str_mco_unmap.index)} terms based on string siilarity..\n")
str_matches_syn = mapping_fun.str_match_map_mco(
str_mco_unmap, mco_syn,
min_match=min_score,
npl_merges=False)
str_matches_syn_odf = str_matches_syn[str_matches_syn.SET >= min_score]
str_matches_syn_odf["SOURCE"] = mco_syn_ifile
#################### save str-sim map terms ####################
all_str_matches_odf = concat(
[str_matches_odf, str_matches_syn_odf],
sort = True).dropna()
print(f"Unique terms mapped by string similarity: {len(all_str_matches_odf.index)}")
all_str_matches_npl_odf = merge(
npl_df, all_str_matches_odf,
on = ["TERM_NAME"],
how="inner")
print(f"Total of terms mapped by string similarity: {len(all_str_matches_npl_odf.index)}")
print("Saving filtered terms from str mapping...\n\n")
all_str_matches_npl_odf.to_csv(
strmap_ofile,
sep = "\t",
header =True,
index=False)
#################### save all map terms ####################
raw_map_odf["CASE_MATCH"] = "MCO"
raw_map_odf["SET"] = 100
raw_map_odf["SORT"] = 100
full_map = concat(
[all_str_matches_npl_odf, raw_map_odf],
sort = True)
full_map["MAP"]=True
full_map.to_csv(full_map_ofile,
sep = "\t",
header =True,
index=False)
print("--------------------END----------------------")
print(f"Total of terms mapped: {len(full_map.index)}\n")
###################### Merge all unmapped ######################
full_unmap = merge(npl_df, full_map[["TERM_NAME", "TERM_ID"]], on = ["TERM_NAME"], how='left')
full_unmap = full_unmap[full_unmap.isna().TERM_ID]
#print(full_unmap.head(3))
print(f"Total of terms unmapped: {len(full_unmap.index)}")
full_unmap["SOURCE"] = ""
full_unmap["CASE_MATCH"] = ""
full_unmap["SET"] = 0
full_unmap["SORT"] = 0
full_unmap["MAP"]=False
full_unmap.to_csv(
full_unmap_ofile,
sep = "\t",
header =True,
index=False)
#################### Formatting json ####################
format_fun.to_json(
df = full_map,
source_info = "GEO",
evidence_source = "NPL-CRF",
ofname = json_ofile_map
)
format_fun.to_json(
df = full_unmap,
source_info = "GEO",
evidence_source = "NPL-CRF",
ofname = json_ofile_unmap
)
#Merge output all
full_merge = concat([full_map, full_unmap], sort=True)
format_fun.to_json(
df = full_merge,
source_info = "GEO",
evidence_source = "NPL-CRF",
ofname = json_ofile_full
)