Run8_v10.txt 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003613s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0         1
0       lemma         2
1      postag        CD
2    -1:lemma  fructose
3   -1:postag        NN
4      hUpper     False
5      hLower     False
6      hGreek     False
7        symb     False
8    word[:1]         2
9        word         2
10    isUpper     False
11    isLower     False
12    isGreek     False
13   isNumber      True
14    -1:word  fructose
15   -2:lemma       Cra
16  -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
            0           1
0       lemma  delta-arca
1      postag          NN
2    -1:lemma           _
3   -1:postag          NN
4    +1:lemma           _
5   +1:postag          CD
6      hUpper        True
7      hLower        True
8      hGreek       False
9        symb        True
10   word[:1]           d
11   word[:2]          de
12       word  delta-arcA
13    isUpper       False
14    isLower       False
15    isGreek       False
16   isNumber       False
17    -1:word           _
18    +1:word           _
19   -2:lemma     affyexp
20  -2:postag          JJ
21   +2:lemma     glucose
22  +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.856131 -   1.3s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.850628 -   1.8s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.855584 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.805243 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.860618 -   1.9s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.817562 -   1.5s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.936699 -   1.8s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.839785 -   1.6s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.940884 -   1.7s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.880183 -   1.6s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.946646 -   1.8s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.904483 -   1.6s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.931991 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.927469 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.831340 -   1.8s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.931991 -   1.8s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.860367 -   1.6s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.931487 -   1.8s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.843262 -   1.9s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.694284 -   1.7s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.684520 -   1.4s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.860618 -   1.7s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.866388 -   2.0s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.792923 -   1.8s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.834495 -   2.0s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.823620 -   1.7s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.862461 -   1.6s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.835917 -   1.8s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.931991 -   1.6s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.866388 -   1.5s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.904483 -   1.5s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.931991 -   1.7s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.834436 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.820947 -   1.7s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.923585 -   2.2s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.819500 -   1.7s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.819500 -   1.7s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.886301 -   1.6s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.932900 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.831561 -   1.8s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.859499 -   1.6s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.950725 -   1.8s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.919606 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.876202 -   1.7s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.922774 -   1.9s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.922774 -   1.7s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.857572 -   1.9s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.854858 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.816251 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.932775 -   1.9s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.873704 -   1.7s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.848780 -   1.9s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.867297 -   1.8s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.852277 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.946646 -   2.0s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.936699 -   1.8s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.889913 -   1.7s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.872798 -   1.8s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.854009 -   1.8s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.849184 -   1.8s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.922774 -   1.7s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.759900 -   1.4s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.834495 -   1.8s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.701018 -   1.8s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.834436 -   1.9s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.857572 -   2.0s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.701018 -   1.7s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.731222 -   2.0s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.881053 -   1.7s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.931991 -   1.8s
[CV] c1=0.4420415052296795, c2=0.07721906671833131 ...................
[CV]  c1=0.4420415052296795, c2=0.07721906671833131, score=0.848780 -   1.4s
[CV] c1=0.40509433275603074, c2=0.06406543656353396 ..................
[CV]  c1=0.40509433275603074, c2=0.06406543656353396, score=0.693016 -   1.7s
[CV] c1=0.006371899009903469, c2=0.06787470837280492 .................
[CV]  c1=0.006371899009903469, c2=0.06787470837280492, score=0.698450 -   1.9s
[CV] c1=0.5360507066860308, c2=0.22373749787706054 ...................
[CV]  c1=0.5360507066860308, c2=0.22373749787706054, score=0.677786 -   1.9s
[CV] c1=0.41559189389198053, c2=0.024104836626471112 .................
[CV]  c1=0.41559189389198053, c2=0.024104836626471112, score=0.693016 -   1.9s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.857594 -   1.7s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.816747 -   1.5s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.946646 -   1.8s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.935984 -   1.7s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.897012 -   1.7s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.677786 -   1.9s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.848780 -   1.7s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.931991 -   1.9s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.852019 -   1.9s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.863117 -   1.6s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.950725 -   2.0s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.827485 -   1.7s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.857572 -   1.7s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.839785 -   1.7s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.849184 -   1.6s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.834495 -   1.8s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.932900 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.916643 -   1.7s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.864903 -   1.6s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.950876 -   1.6s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.652822 -   1.7s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.940537 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.839443 -   1.6s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.855735 -   1.8s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.849255 -   1.6s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.868123 -   1.8s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.931991 -   1.7s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.886480 -   1.7s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.829534 -   1.9s
[CV] c1=0.012363125351600902, c2=0.1572507114704887 ..................
[CV]  c1=0.012363125351600902, c2=0.1572507114704887, score=0.837423 -   1.8s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.819500 -   1.8s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.834781 -   1.8s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.925645 -   1.8s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.872798 -   1.8s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.866388 -   1.6s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.866388 -   1.7s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.747737 -   1.7s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.871771 -   1.5s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.841626 -   1.8s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.863117 -   1.4s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.932900 -   1.8s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.861159 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.931991 -   1.8s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.946646 -   1.7s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.834436 -   1.6s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.827485 -   1.8s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.933245 -   1.7s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.865754 -   1.6s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.899527 -   1.7s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.837423 -   1.5s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.926690 -   1.7s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.812135 -   1.7s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.936699 -   2.0s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.922774 -   1.6s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.809959 -   1.3s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.784847 -   1.9s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.901459 -   1.7s
[CV] c1=0.3472271220144462, c2=0.014176061322889857 ..................
[CV]  c1=0.3472271220144462, c2=0.014176061322889857, score=0.831561 -   1.7s
[CV] c1=0.15298119165388915, c2=0.018482656916134235 .................
[CV]  c1=0.15298119165388915, c2=0.018482656916134235, score=0.956017 -   2.1s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.698450 -   1.6s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.883693 -   1.8s
[CV] c1=0.2336502013872894, c2=0.09318602763483955 ...................
[CV]  c1=0.2336502013872894, c2=0.09318602763483955, score=0.946103 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.792847 -   1.9s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.712400 -   1.9s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.926835 -   1.6s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.827616 -   2.0s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.834495 -   1.9s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.946103 -   2.0s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.817562 -   1.6s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.854858 -   1.4s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.698450 -   1.7s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.825574 -   1.6s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.822834 -   1.8s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.927509 -   1.8s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.939823 -   1.5s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.931991 -   1.7s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.633535 -   1.8s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.844415 -   1.8s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.857594 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.917473 -   1.3s
[CV] c1=0.4217142984283428, c2=0.1679065014088753 ....................
[CV]  c1=0.4217142984283428, c2=0.1679065014088753, score=0.936674 -   1.8s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.629526 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.834495 -   1.9s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.831561 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.790503 -   1.5s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.855584 -   1.8s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.834495 -   1.9s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.872206 -   1.7s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.647210 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.821826 -   1.4s
[CV] c1=0.7548748937747425, c2=0.01567613490693052 ...................
[CV]  c1=0.7548748937747425, c2=0.01567613490693052, score=0.815186 -   1.7s
[CV] c1=0.8144879781785279, c2=0.024720227111225807 ..................
[CV]  c1=0.8144879781785279, c2=0.024720227111225807, score=0.927028 -   1.8s
[CV] c1=0.28682775544038513, c2=0.08729987447030063 ..................
[CV]  c1=0.28682775544038513, c2=0.08729987447030063, score=0.709513 -   1.8s
[CV] c1=0.4023568295081368, c2=0.005508317640747278 ..................
[CV]  c1=0.4023568295081368, c2=0.005508317640747278, score=0.834495 -   1.8s
[CV] c1=0.011895855801865073, c2=0.13347483267807422 .................
[CV]  c1=0.011895855801865073, c2=0.13347483267807422, score=0.931991 -   1.4s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.869204 -   1.7s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.858068 -   1.9s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.965003 -   1.8s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.827485 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.793883 -   1.2s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.929431 -   1.8s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.811937 -   1.8s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.878301 -   1.7s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.932900 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.928279 -   1.2s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.872206 -   1.8s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.917821 -   1.7s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.694284 -   1.8s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.834495 -   2.0s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.851880 -   1.4s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.854858 -   1.7s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.827485 -   1.7s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.931991 -   1.7s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.781928 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.607714 -   1.5s
[CV] c1=0.0006462709537178506, c2=0.04908644406590121 ................
[CV]  c1=0.0006462709537178506, c2=0.04908644406590121, score=0.834436 -   1.8s
[CV] c1=0.8064748804871678, c2=0.0566511582931341 ....................
[CV]  c1=0.8064748804871678, c2=0.0566511582931341, score=0.932900 -   2.0s
[CV] c1=0.034331838389826896, c2=0.07441350049485611 .................
[CV]  c1=0.034331838389826896, c2=0.07441350049485611, score=0.939823 -   1.8s
[CV] c1=0.7303370849262278, c2=0.0338506308830609 ....................
[CV]  c1=0.7303370849262278, c2=0.0338506308830609, score=0.819500 -   1.8s
[CV] c1=1.327429294256592, c2=0.014318433897260289 ...................
[CV]  c1=1.327429294256592, c2=0.014318433897260289, score=0.799616 -   1.2s
Training done in: 11.832994s
     Saving training model...
        Saving training model done in: 0.013243s
*********************************
Prediction done in: 0.046246s