Run6_v11.txt 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True False
Report file: _v11
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003670s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
             0         1
0        lemma         2
1       postag        CD
2     -1:lemma  fructose
3    -1:postag        NN
4       hUpper     False
5       hLower     False
6       hGreek     False
7         symb     False
8    lemma[:1]         2
9   postag[:1]         C
10  postag[:2]        CD
11    -2:lemma       Cra
12   -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
             0           1
0        lemma  delta-arca
1       postag          NN
2     -1:lemma           _
3    -1:postag          NN
4     +1:lemma           _
5    +1:postag          CD
6       hUpper        True
7       hLower        True
8       hGreek       False
9         symb        True
10   lemma[:1]           d
11  postag[:1]           N
12   lemma[:2]          de
13  postag[:2]          NN
14    -2:lemma     affyexp
15   -2:postag          JJ
16    +2:lemma     glucose
17   +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.744355 -   1.3s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.822757 -   1.4s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.918061 -   1.9s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.894139 -   1.6s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.864177 -   1.5s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.876836 -   1.2s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.820742 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.825305 -   1.4s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.918061 -   1.4s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.683730 -   1.5s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.862409 -   1.2s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.974589 -   1.8s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.852603 -   1.6s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.856825 -   1.4s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.823313 -   1.6s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.892089 -   1.5s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.862528 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.926731 -   1.4s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.839218 -   1.6s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.843508 -   1.3s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.808908 -   1.2s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.850984 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.844946 -   1.6s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.854858 -   2.1s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.913115 -   1.5s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.817270 -   1.8s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.927009 -   2.0s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.593314 -   1.9s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.893806 -   1.5s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.593314 -   1.8s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.727632 -   1.5s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.877930 -   1.4s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.931609 -   1.4s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.738299 -   1.4s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.884690 -   1.4s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.889202 -   1.4s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.928892 -   1.4s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.818750 -   1.3s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.621607 -   1.4s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.821991 -   1.5s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.901996 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.928660 -   1.9s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.825305 -   1.7s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.918674 -   1.5s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.932900 -   1.6s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.925560 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.841914 -   1.5s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.800885 -   1.7s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.871570 -   1.6s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.782611 -   1.4s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.729474 -   1.6s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.702472 -   1.6s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.810655 -   1.4s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.868123 -   1.5s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.759234 -   1.4s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.923594 -   1.5s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.825609 -   1.7s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.918674 -   1.4s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.929634 -   1.4s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.633367 -   1.5s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.946672 -   1.5s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.691973 -   1.7s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.818750 -   2.0s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.931609 -   1.7s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.872081 -   1.4s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.867416 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.876526 -   1.7s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.873607 -   2.0s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.812173 -   1.7s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.925560 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.839327 -   1.9s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.923229 -   2.0s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.927148 -   1.6s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.918835 -   1.6s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.818165 -   1.6s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.913446 -   1.5s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.818750 -   1.3s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.925560 -   1.2s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.946685 -   1.5s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.609476 -   1.7s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.888815 -   1.4s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.929634 -   1.5s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.969625 -   1.3s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.730024 -   1.6s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.905760 -   1.5s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.881315 -   1.7s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.916643 -   1.6s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.811582 -   1.6s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.860761 -   1.6s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.824101 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.858859 -   1.6s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.950946 -   1.6s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.845991 -   1.5s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.886827 -   1.5s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.927302 -   1.8s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.872077 -   1.5s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.868123 -   1.8s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.823092 -   1.2s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.894139 -   1.3s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.718921 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.823313 -   1.6s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.777170 -   1.6s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.839218 -   2.0s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.818750 -   1.7s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.824733 -   1.5s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.843508 -   1.6s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.767841 -   1.6s
[CV] c1=0.151964914335486, c2=0.06419525243307017 ....................
[CV]  c1=0.151964914335486, c2=0.06419525243307017, score=0.900263 -   1.6s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.907943 -   1.6s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.827435 -   1.6s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.824101 -   1.5s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.861991 -   1.6s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.898170 -   1.3s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.908836 -   1.5s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.925560 -   1.6s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.923585 -   1.6s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.727632 -   1.4s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.837210 -   1.4s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.934961 -   1.6s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.700167 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.718975 -   1.7s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.871570 -   1.7s
[CV] c1=0.7691901366762777, c2=0.018786342851753436 ..................
[CV]  c1=0.7691901366762777, c2=0.018786342851753436, score=0.820742 -   1.7s
[CV] c1=0.9362245178762235, c2=0.0036840823697806197 .................
[CV]  c1=0.9362245178762235, c2=0.0036840823697806197, score=0.811582 -   1.6s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.801739 -   1.8s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.922590 -   1.7s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.839383 -   1.6s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.828771 -   1.6s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.827010 -   1.6s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.828771 -   1.5s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.886827 -   1.5s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.913115 -   1.7s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.850984 -   1.6s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.878770 -   1.4s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.834850 -   1.6s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.836321 -   1.6s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.691973 -   1.7s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.881315 -   1.5s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.873287 -   1.6s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.923259 -   1.5s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.931609 -   1.7s
[CV] c1=0.19547632362615144, c2=0.051817682646593026 .................
[CV]  c1=0.19547632362615144, c2=0.051817682646593026, score=0.683730 -   2.0s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.913115 -   1.6s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.727632 -   1.2s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.848986 -   1.6s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.893806 -   1.3s
[CV] c1=1.1770464694382454, c2=0.07280122254622126 ...................
[CV]  c1=1.1770464694382454, c2=0.07280122254622126, score=0.727632 -   1.6s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.918061 -   1.5s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.888270 -   1.0s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.790879 -   1.6s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.904751 -   1.5s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.918674 -   1.5s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.784927 -   1.6s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.729474 -   1.7s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.946685 -   1.2s
[CV] c1=0.21944861613366148, c2=0.007493367060064349 .................
[CV]  c1=0.21944861613366148, c2=0.007493367060064349, score=0.813790 -   1.5s
[CV] c1=0.13542106358526157, c2=0.06613572987227866 ..................
[CV]  c1=0.13542106358526157, c2=0.06613572987227866, score=0.917828 -   1.5s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.927564 -   1.6s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.803211 -   1.6s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.819619 -   1.1s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.864462 -   1.6s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.862528 -   1.5s
[CV] c1=0.41069923197664315, c2=0.02601572011706776 ..................
[CV]  c1=0.41069923197664315, c2=0.02601572011706776, score=0.820742 -   1.9s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.777170 -   1.5s
[CV] c1=0.16617627893415826, c2=0.016246283722594547 .................
[CV]  c1=0.16617627893415826, c2=0.016246283722594547, score=0.848986 -   1.6s
[CV] c1=1.508340551127507, c2=0.021335543550593316 ...................
[CV]  c1=1.508340551127507, c2=0.021335543550593316, score=0.781951 -   1.5s
[CV] c1=0.3279727332028919, c2=0.004720316064409802 ..................
[CV]  c1=0.3279727332028919, c2=0.004720316064409802, score=0.813790 -   1.8s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.830388 -   1.5s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.819787 -   1.7s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.679842 -   1.4s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.751773 -   1.7s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.818750 -   1.5s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.817260 -   1.7s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.633367 -   1.8s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.868123 -   1.3s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.854858 -   1.6s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.767841 -   1.6s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.905632 -   1.5s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.889572 -   1.5s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.828274 -   1.5s
[CV] c1=0.005294883330735351, c2=0.01797692767656751 .................
[CV]  c1=0.005294883330735351, c2=0.01797692767656751, score=0.925560 -   1.4s
[CV] c1=0.4737963896619468, c2=0.010699938700759807 ..................
[CV]  c1=0.4737963896619468, c2=0.010699938700759807, score=0.946646 -   1.6s
[CV] c1=0.09326310944142512, c2=0.02293857362257262 ..................
[CV]  c1=0.09326310944142512, c2=0.02293857362257262, score=0.941948 -   1.7s
[CV] c1=0.6526918794500971, c2=0.014168653025375195 ..................
[CV]  c1=0.6526918794500971, c2=0.014168653025375195, score=0.932900 -   1.7s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.775915 -   1.6s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.881315 -   1.6s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.874304 -   1.6s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.881315 -   1.7s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.821991 -   1.7s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.929634 -   1.3s
[CV] c1=0.015260815191617596, c2=0.010533468233650554 ................
[CV]  c1=0.015260815191617596, c2=0.010533468233650554, score=0.856896 -   1.7s
[CV] c1=1.1791456131357725, c2=0.009905947625121205 ..................
[CV]  c1=1.1791456131357725, c2=0.009905947625121205, score=0.791058 -   1.6s
[CV] c1=0.01625033152790397, c2=0.004437967561302151 .................
[CV]  c1=0.01625033152790397, c2=0.004437967561302151, score=0.722450 -   1.9s
[CV] c1=1.0574768522936129, c2=0.010094693629619428 ..................
[CV]  c1=1.0574768522936129, c2=0.010094693629619428, score=0.868514 -   1.6s
[CV] c1=0.4639226651882826, c2=0.1771708074662829 ....................
[CV]  c1=0.4639226651882826, c2=0.1771708074662829, score=0.898935 -   1.4s
Training done in: 10.548893s
     Saving training model...
        Saving training model done in: 0.013080s
*********************************
Prediction done in: 0.041656s