Run16_v12.txt
65.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
-------------------------------- PARAMETERS --------------------------------
Path of test and training data sets: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
Path of outputs: /home/egaytan/automatic-extraction-growth-conditions/CRF/
File with training data set: training-data-set-70-NER.txt
File with test data set: test-data-set-30-NER.txt
reportName: Run16
Exclude stop words: False
Levels: S1: TrueS2: TrueS3: TrueS4: True
Run variant: 12
Number of rules on report file: 500
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
Sentences training data: 286
Sentences test data: 123
Reading corpus done in: 0.003725s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
0 1
0 lemma :
1 postag :
2 -1:lemma in
3 -1:postag IN
4 +1:lemma m9
5 +1:postag NN
6 hUpper False
7 hLower False
8 hGreek False
9 symb False
10 word[:1] :
11 postag[:1] :
12 word :
13 isUpper False
14 isLower False
15 isGreek False
16 isNumber False
17 -1:word in
18 +1:word M9
19 -2:lemma culture
20 -2:postag VBN
21 +2:lemma minimal
22 +2:postag JJ
23 -1:ner _
24 +1:ner MED
25 -2:ner _
26 +2:ner MED
--------------------------- FeaturesTest -----------------------------
0 1
0 lemma delta-arca
1 postag NN
2 -1:lemma _
3 -1:postag NN
4 +1:lemma _
5 +1:postag CD
6 hUpper True
7 hLower True
8 hGreek False
9 symb False
10 word[:1] d
11 word[:2] de
12 postag[:1] N
13 postag[:2] NN
14 word delta-arcA
15 isUpper False
16 isLower False
17 isGreek False
18 isNumber False
19 -1:word _
20 +1:word _
21 -2:lemma affyexp
22 -2:postag JJ
23 +2:lemma glucose
24 +2:postag NN
25 -1:ner _
26 +1:ner _
27 -2:ner _
28 +2:ner SUPP
Fitting 5 folds for each of 100 candidates, totalling 500 fits
[CV] c1=0.8573111416520891, c2=0.03332557158918708 ...................
[CV] c1=0.8573111416520891, c2=0.03332557158918708, score=0.838456 - 1.7s
[CV] c1=0.12486633054768549, c2=0.020247643480145495 .................
[CV] c1=0.12486633054768549, c2=0.020247643480145495, score=0.783647 - 1.5s
[CV] c1=0.34675400327606554, c2=0.0496007698240786 ...................
[CV] c1=0.34675400327606554, c2=0.0496007698240786, score=0.878036 - 2.0s
[CV] c1=0.002603283872351975, c2=0.025222837206245876 ................
[CV] c1=0.002603283872351975, c2=0.025222837206245876, score=0.800717 - 1.9s
[CV] c1=0.13003109865596438, c2=0.016991762037143546 .................
[CV] c1=0.13003109865596438, c2=0.016991762037143546, score=0.885624 - 1.9s
[CV] c1=0.8797741184119439, c2=0.04277219171275081 ...................
[CV] c1=0.8797741184119439, c2=0.04277219171275081, score=0.710258 - 1.6s
[CV] c1=0.3482734344654556, c2=0.10182268088558233 ...................
[CV] c1=0.3482734344654556, c2=0.10182268088558233, score=0.756732 - 1.6s
[CV] c1=0.3209211292696093, c2=0.018635182914399587 ..................
[CV] c1=0.3209211292696093, c2=0.018635182914399587, score=0.755786 - 1.5s
[CV] c1=1.1258449837691988, c2=0.05054416342137652 ...................
[CV] c1=1.1258449837691988, c2=0.05054416342137652, score=0.660043 - 1.4s
[CV] c1=0.4318150456834849, c2=0.07807671816965212 ...................
[CV] c1=0.4318150456834849, c2=0.07807671816965212, score=0.754746 - 1.6s
[CV] c1=0.3062891243526067, c2=0.05388728928364015 ...................
[CV] c1=0.3062891243526067, c2=0.05388728928364015, score=0.767149 - 1.5s
[CV] c1=0.20975711375775957, c2=0.10060795680281127 ..................
[CV] c1=0.20975711375775957, c2=0.10060795680281127, score=0.807861 - 1.9s
[CV] c1=1.165531304075132, c2=0.03484536079017848 ....................
[CV] c1=1.165531304075132, c2=0.03484536079017848, score=0.862530 - 1.9s
[CV] c1=3.0720235164918974, c2=0.007742400041516841 ..................
[CV] c1=3.0720235164918974, c2=0.007742400041516841, score=0.571897 - 1.8s
[CV] c1=1.3078815855488541, c2=0.010394324801136641 ..................
[CV] c1=1.3078815855488541, c2=0.010394324801136641, score=0.802604 - 1.8s
[CV] c1=0.10897889931461163, c2=0.010750160202335471 .................
[CV] c1=0.10897889931461163, c2=0.010750160202335471, score=0.851627 - 1.8s
[CV] c1=0.08526788571110812, c2=0.13382531105480874 ..................
[CV] c1=0.08526788571110812, c2=0.13382531105480874, score=0.799708 - 1.9s
[CV] c1=0.04632998128229683, c2=0.06907412685996904 ..................
[CV] c1=0.04632998128229683, c2=0.06907412685996904, score=0.880051 - 1.9s
[CV] c1=0.15235847616529405, c2=0.005140820742760215 .................
[CV] c1=0.15235847616529405, c2=0.005140820742760215, score=0.791837 - 1.9s
[CV] c1=3.6536400451021973, c2=0.0615815143070015 ....................
[CV] c1=3.6536400451021973, c2=0.0615815143070015, score=0.445226 - 1.8s
[CV] c1=0.34806218030922864, c2=0.03125308462899429 ..................
[CV] c1=0.34806218030922864, c2=0.03125308462899429, score=0.869687 - 1.8s
[CV] c1=1.0298929909520367, c2=0.03327170617889213 ...................
[CV] c1=1.0298929909520367, c2=0.03327170617889213, score=0.801996 - 1.7s
[CV] c1=0.20255253328883313, c2=0.04337614719657083 ..................
[CV] c1=0.20255253328883313, c2=0.04337614719657083, score=0.751268 - 1.5s
[CV] c1=0.3772307005646545, c2=0.034457848007251664 ..................
[CV] c1=0.3772307005646545, c2=0.034457848007251664, score=0.837619 - 1.9s
[CV] c1=0.6829291892899357, c2=0.00238956595775298 ...................
[CV] c1=0.6829291892899357, c2=0.00238956595775298, score=0.735695 - 1.5s
[CV] c1=1.1290602496930402, c2=0.10292353664811803 ...................
[CV] c1=1.1290602496930402, c2=0.10292353664811803, score=0.780991 - 1.7s
[CV] c1=0.8593787367606301, c2=0.03082738341727498 ...................
[CV] c1=0.8593787367606301, c2=0.03082738341727498, score=0.704550 - 1.9s
[CV] c1=0.08544829519639574, c2=0.1548415335966792 ...................
[CV] c1=0.08544829519639574, c2=0.1548415335966792, score=0.876044 - 2.0s
[CV] c1=0.021811050212240758, c2=0.06450844323213505 .................
[CV] c1=0.021811050212240758, c2=0.06450844323213505, score=0.758177 - 1.5s
[CV] c1=0.13003109865596438, c2=0.016991762037143546 .................
[CV] c1=0.13003109865596438, c2=0.016991762037143546, score=0.881503 - 1.9s
[CV] c1=0.8155542506543331, c2=0.16478687110735463 ...................
[CV] c1=0.8155542506543331, c2=0.16478687110735463, score=0.677695 - 2.0s
[CV] c1=0.078525676715756, c2=0.11203131301356009 ....................
[CV] c1=0.078525676715756, c2=0.11203131301356009, score=0.880176 - 1.9s
[CV] c1=0.43125884569175277, c2=0.03408914109225735 ..................
[CV] c1=0.43125884569175277, c2=0.03408914109225735, score=0.753571 - 2.0s
[CV] c1=0.07255895387310529, c2=0.053696431131930934 .................
[CV] c1=0.07255895387310529, c2=0.053696431131930934, score=0.887853 - 1.8s
[CV] c1=0.5724415337066926, c2=0.028938468449420985 ..................
[CV] c1=0.5724415337066926, c2=0.028938468449420985, score=0.751509 - 1.5s
[CV] c1=1.7172114550567856, c2=0.06053114514989168 ...................
[CV] c1=1.7172114550567856, c2=0.06053114514989168, score=0.619095 - 2.0s
[CV] c1=1.434698574838073, c2=0.08311074306861754 ....................
[CV] c1=1.434698574838073, c2=0.08311074306861754, score=0.625504 - 2.0s
[CV] c1=0.028717184336666087, c2=0.07464475523861196 .................
[CV] c1=0.028717184336666087, c2=0.07464475523861196, score=0.861188 - 1.8s
[CV] c1=0.4733314263697012, c2=0.12651017307500673 ...................
[CV] c1=0.4733314263697012, c2=0.12651017307500673, score=0.729128 - 1.9s
[CV] c1=0.48889236588787044, c2=0.03331411438297624 ..................
[CV] c1=0.48889236588787044, c2=0.03331411438297624, score=0.855162 - 1.9s
[CV] c1=0.08526788571110812, c2=0.13382531105480874 ..................
[CV] c1=0.08526788571110812, c2=0.13382531105480874, score=0.861188 - 1.8s
[CV] c1=0.25794287148115197, c2=0.040580206830349755 .................
[CV] c1=0.25794287148115197, c2=0.040580206830349755, score=0.790487 - 1.9s
[CV] c1=0.166457809567163, c2=0.13889362459375734 ....................
[CV] c1=0.166457809567163, c2=0.13889362459375734, score=0.834802 - 1.9s
[CV] c1=3.6536400451021973, c2=0.0615815143070015 ....................
[CV] c1=3.6536400451021973, c2=0.0615815143070015, score=0.551852 - 2.0s
[CV] c1=1.1258449837691988, c2=0.05054416342137652 ...................
[CV] c1=1.1258449837691988, c2=0.05054416342137652, score=0.863959 - 1.8s
[CV] c1=0.3230775045789648, c2=0.10808522186584256 ...................
[CV] c1=0.3230775045789648, c2=0.10808522186584256, score=0.764202 - 1.5s
[CV] c1=0.011605599912145288, c2=0.00632063180711085 .................
[CV] c1=0.011605599912145288, c2=0.00632063180711085, score=0.852275 - 1.8s
[CV] c1=0.09153402991931628, c2=0.009197816826480097 .................
[CV] c1=0.09153402991931628, c2=0.009197816826480097, score=0.869476 - 1.8s
[CV] c1=0.6829291892899357, c2=0.00238956595775298 ...................
[CV] c1=0.6829291892899357, c2=0.00238956595775298, score=0.818250 - 1.7s
[CV] c1=0.25976124774631704, c2=0.016125813344577442 .................
[CV] c1=0.25976124774631704, c2=0.016125813344577442, score=0.773963 - 1.4s
[CV] c1=0.8593787367606301, c2=0.03082738341727498 ...................
[CV] c1=0.8593787367606301, c2=0.03082738341727498, score=0.874829 - 1.9s
[CV] c1=0.08544829519639574, c2=0.1548415335966792 ...................
[CV] c1=0.08544829519639574, c2=0.1548415335966792, score=0.807056 - 2.0s
[CV] c1=0.021811050212240758, c2=0.06450844323213505 .................
[CV] c1=0.021811050212240758, c2=0.06450844323213505, score=0.880176 - 1.9s
[CV] c1=0.06983810409088079, c2=0.039753081826740366 .................
[CV] c1=0.06983810409088079, c2=0.039753081826740366, score=0.849670 - 1.8s
[CV] c1=0.8797741184119439, c2=0.04277219171275081 ...................
[CV] c1=0.8797741184119439, c2=0.04277219171275081, score=0.693713 - 1.9s
[CV] c1=0.078525676715756, c2=0.11203131301356009 ....................
[CV] c1=0.078525676715756, c2=0.11203131301356009, score=0.796024 - 1.9s
[CV] c1=0.6034643080105504, c2=0.09205986702839997 ...................
[CV] c1=0.6034643080105504, c2=0.09205986702839997, score=0.881456 - 1.9s
[CV] c1=0.07255895387310529, c2=0.053696431131930934 .................
[CV] c1=0.07255895387310529, c2=0.053696431131930934, score=0.797318 - 1.9s
[CV] c1=0.5724415337066926, c2=0.028938468449420985 ..................
[CV] c1=0.5724415337066926, c2=0.028938468449420985, score=0.854778 - 2.0s
[CV] c1=0.3772307005646545, c2=0.034457848007251664 ..................
[CV] c1=0.3772307005646545, c2=0.034457848007251664, score=0.749705 - 1.9s
[CV] c1=0.5126391482560252, c2=0.04065741496927025 ...................
[CV] c1=0.5126391482560252, c2=0.04065741496927025, score=0.822710 - 1.9s
[CV] c1=0.25976124774631704, c2=0.016125813344577442 .................
[CV] c1=0.25976124774631704, c2=0.016125813344577442, score=0.920574 - 1.7s
[CV] c1=0.12486633054768549, c2=0.020247643480145495 .................
[CV] c1=0.12486633054768549, c2=0.020247643480145495, score=0.799708 - 1.9s
[CV] c1=0.1600048120256439, c2=0.06749727157242567 ...................
[CV] c1=0.1600048120256439, c2=0.06749727157242567, score=0.811445 - 1.9s
[CV] c1=0.48773956152235637, c2=0.2087716155378857 ...................
[CV] c1=0.48773956152235637, c2=0.2087716155378857, score=0.688022 - 1.5s
[CV] c1=0.06983810409088079, c2=0.039753081826740366 .................
[CV] c1=0.06983810409088079, c2=0.039753081826740366, score=0.873497 - 1.9s
[CV] c1=0.7392917194575317, c2=0.004261307031590841 ..................
[CV] c1=0.7392917194575317, c2=0.004261307031590841, score=0.749955 - 1.5s
[CV] c1=0.3482734344654556, c2=0.10182268088558233 ...................
[CV] c1=0.3482734344654556, c2=0.10182268088558233, score=0.878036 - 2.0s
[CV] c1=0.43125884569175277, c2=0.03408914109225735 ..................
[CV] c1=0.43125884569175277, c2=0.03408914109225735, score=0.899526 - 1.9s
[CV] c1=0.24729397915104762, c2=0.017615681666529773 .................
[CV] c1=0.24729397915104762, c2=0.017615681666529773, score=0.782436 - 1.8s
[CV] c1=0.11680398654439843, c2=0.1066663364975167 ...................
[CV] c1=0.11680398654439843, c2=0.1066663364975167, score=0.849132 - 1.8s
[CV] c1=0.20975711375775957, c2=0.10060795680281127 ..................
[CV] c1=0.20975711375775957, c2=0.10060795680281127, score=0.854423 - 2.1s
[CV] c1=0.5126391482560252, c2=0.04065741496927025 ...................
[CV] c1=0.5126391482560252, c2=0.04065741496927025, score=0.902602 - 1.9s
[CV] c1=0.028717184336666087, c2=0.07464475523861196 .................
[CV] c1=0.028717184336666087, c2=0.07464475523861196, score=0.763961 - 1.5s
[CV] c1=0.12486633054768549, c2=0.020247643480145495 .................
[CV] c1=0.12486633054768549, c2=0.020247643480145495, score=0.875412 - 1.9s
[CV] c1=0.48547564926572967, c2=0.12399066402119606 ..................
[CV] c1=0.48547564926572967, c2=0.12399066402119606, score=0.904253 - 1.9s
[CV] c1=0.48773956152235637, c2=0.2087716155378857 ...................
[CV] c1=0.48773956152235637, c2=0.2087716155378857, score=0.720853 - 2.1s
[CV] c1=0.2821831285504188, c2=0.09370582467361752 ...................
[CV] c1=0.2821831285504188, c2=0.09370582467361752, score=0.854423 - 1.7s
[CV] c1=0.005639683858693419, c2=0.06244427245549233 .................
[CV] c1=0.005639683858693419, c2=0.06244427245549233, score=0.818706 - 1.8s
[CV] c1=1.2515631393023146, c2=0.03183816278568514 ...................
[CV] c1=1.2515631393023146, c2=0.03183816278568514, score=0.785213 - 1.8s
[CV] c1=1.344815889243292, c2=0.15259537559293232 ....................
[CV] c1=1.344815889243292, c2=0.15259537559293232, score=0.781043 - 1.8s
[CV] c1=0.1781702520377878, c2=0.025004338405887436 ..................
[CV] c1=0.1781702520377878, c2=0.025004338405887436, score=0.773867 - 1.5s
[CV] c1=0.5724415337066926, c2=0.028938468449420985 ..................
[CV] c1=0.5724415337066926, c2=0.028938468449420985, score=0.728268 - 1.9s
[CV] c1=0.5559377210253521, c2=0.013392070411862562 ..................
[CV] c1=0.5559377210253521, c2=0.013392070411862562, score=0.845829 - 1.9s
[CV] c1=1.165531304075132, c2=0.03484536079017848 ....................
[CV] c1=1.165531304075132, c2=0.03484536079017848, score=0.691332 - 1.9s
[CV] c1=3.0720235164918974, c2=0.007742400041516841 ..................
[CV] c1=3.0720235164918974, c2=0.007742400041516841, score=0.697111 - 1.8s
[CV] c1=1.3078815855488541, c2=0.010394324801136641 ..................
[CV] c1=1.3078815855488541, c2=0.010394324801136641, score=0.619809 - 2.0s
[CV] c1=0.20503295269610408, c2=0.009131358726044252 .................
[CV] c1=0.20503295269610408, c2=0.009131358726044252, score=0.782492 - 1.5s
[CV] c1=0.4031086355715093, c2=0.15245013793199164 ...................
[CV] c1=0.4031086355715093, c2=0.15245013793199164, score=0.835542 - 1.8s
[CV] c1=0.2821831285504188, c2=0.09370582467361752 ...................
[CV] c1=0.2821831285504188, c2=0.09370582467361752, score=0.846106 - 1.9s
[CV] c1=0.166457809567163, c2=0.13889362459375734 ....................
[CV] c1=0.166457809567163, c2=0.13889362459375734, score=0.728567 - 1.5s
[CV] c1=0.564524940150662, c2=0.016009223436458803 ...................
[CV] c1=0.564524940150662, c2=0.016009223436458803, score=0.882352 - 1.9s
[CV] c1=1.344815889243292, c2=0.15259537559293232 ....................
[CV] c1=1.344815889243292, c2=0.15259537559293232, score=0.624019 - 2.2s
[CV] c1=1.0298929909520367, c2=0.03327170617889213 ...................
[CV] c1=1.0298929909520367, c2=0.03327170617889213, score=0.873181 - 1.8s
[CV] c1=0.011605599912145288, c2=0.00632063180711085 .................
[CV] c1=0.011605599912145288, c2=0.00632063180711085, score=0.852120 - 1.9s
[CV] c1=0.18519774522522023, c2=0.023126645342849184 .................
[CV] c1=0.18519774522522023, c2=0.023126645342849184, score=0.750011 - 1.5s
[CV] c1=0.6829291892899357, c2=0.00238956595775298 ...................
[CV] c1=0.6829291892899357, c2=0.00238956595775298, score=0.883199 - 2.0s
[CV] c1=0.028717184336666087, c2=0.07464475523861196 .................
[CV] c1=0.028717184336666087, c2=0.07464475523861196, score=0.818706 - 1.9s
[CV] c1=1.3078815855488541, c2=0.010394324801136641 ..................
[CV] c1=1.3078815855488541, c2=0.010394324801136641, score=0.860484 - 1.9s
[CV] c1=0.10897889931461163, c2=0.010750160202335471 .................
[CV] c1=0.10897889931461163, c2=0.010750160202335471, score=0.805891 - 1.5s
[CV] c1=0.48773956152235637, c2=0.2087716155378857 ...................
[CV] c1=0.48773956152235637, c2=0.2087716155378857, score=0.831347 - 1.8s
[CV] c1=0.42644807202877966, c2=0.01910944591269954 ..................
[CV] c1=0.42644807202877966, c2=0.01910944591269954, score=0.851538 - 1.8s
[CV] c1=0.7392917194575317, c2=0.004261307031590841 ..................
[CV] c1=0.7392917194575317, c2=0.004261307031590841, score=0.782873 - 2.0s
[CV] c1=1.8413017715662978, c2=0.020647440332441275 ..................
[CV] c1=1.8413017715662978, c2=0.020647440332441275, score=0.838621 - 1.8s
[CV] c1=0.3290750359946001, c2=0.013407782998243004 ..................
[CV] c1=0.3290750359946001, c2=0.013407782998243004, score=0.741401 - 1.5s
[CV] c1=0.07255895387310529, c2=0.053696431131930934 .................
[CV] c1=0.07255895387310529, c2=0.053696431131930934, score=0.849132 - 1.8s
[CV] c1=0.5724415337066926, c2=0.028938468449420985 ..................
[CV] c1=0.5724415337066926, c2=0.028938468449420985, score=0.803789 - 2.0s
[CV] c1=0.3772307005646545, c2=0.034457848007251664 ..................
[CV] c1=0.3772307005646545, c2=0.034457848007251664, score=0.853407 - 1.8s
[CV] c1=0.5126391482560252, c2=0.04065741496927025 ...................
[CV] c1=0.5126391482560252, c2=0.04065741496927025, score=0.846613 - 2.0s
[CV] c1=0.10076937624770857, c2=0.08050652589661307 ..................
[CV] c1=0.10076937624770857, c2=0.08050652589661307, score=0.799708 - 1.9s
[CV] c1=0.8906768251922592, c2=0.020788077802387873 ..................
[CV] c1=0.8906768251922592, c2=0.020788077802387873, score=0.870116 - 1.8s
[CV] c1=0.5655947129474109, c2=0.02233672766127511 ...................
[CV] c1=0.5655947129474109, c2=0.02233672766127511, score=0.902238 - 1.8s
[CV] c1=0.2522819643096065, c2=0.06893900236916922 ...................
[CV] c1=0.2522819643096065, c2=0.06893900236916922, score=0.765405 - 1.5s
[CV] c1=0.25794287148115197, c2=0.040580206830349755 .................
[CV] c1=0.25794287148115197, c2=0.040580206830349755, score=0.807861 - 1.8s
[CV] c1=0.15235847616529405, c2=0.005140820742760215 .................
[CV] c1=0.15235847616529405, c2=0.005140820742760215, score=0.887878 - 1.8s
[CV] c1=3.6536400451021973, c2=0.0615815143070015 ....................
[CV] c1=3.6536400451021973, c2=0.0615815143070015, score=0.475426 - 1.5s
[CV] c1=1.344815889243292, c2=0.15259537559293232 ....................
[CV] c1=1.344815889243292, c2=0.15259537559293232, score=0.645635 - 1.9s
[CV] c1=0.1781702520377878, c2=0.025004338405887436 ..................
[CV] c1=0.1781702520377878, c2=0.025004338405887436, score=0.875592 - 1.9s
[CV] c1=0.011605599912145288, c2=0.00632063180711085 .................
[CV] c1=0.011605599912145288, c2=0.00632063180711085, score=0.810951 - 1.4s
[CV] c1=0.5559377210253521, c2=0.013392070411862562 ..................
[CV] c1=0.5559377210253521, c2=0.013392070411862562, score=0.821749 - 1.8s
[CV] c1=1.165531304075132, c2=0.03484536079017848 ....................
[CV] c1=1.165531304075132, c2=0.03484536079017848, score=0.629789 - 1.9s
[CV] c1=0.25976124774631704, c2=0.016125813344577442 .................
[CV] c1=0.25976124774631704, c2=0.016125813344577442, score=0.798645 - 1.7s
[CV] c1=0.12486633054768549, c2=0.020247643480145495 .................
[CV] c1=0.12486633054768549, c2=0.020247643480145495, score=0.865375 - 1.8s
[CV] c1=0.1600048120256439, c2=0.06749727157242567 ...................
[CV] c1=0.1600048120256439, c2=0.06749727157242567, score=0.739291 - 1.5s
[CV] c1=0.002603283872351975, c2=0.025222837206245876 ................
[CV] c1=0.002603283872351975, c2=0.025222837206245876, score=0.869915 - 1.8s
[CV] c1=0.26310619558082143, c2=0.06477532799827239 ..................
[CV] c1=0.26310619558082143, c2=0.06477532799827239, score=0.846569 - 1.9s
[CV] c1=0.8155542506543331, c2=0.16478687110735463 ...................
[CV] c1=0.8155542506543331, c2=0.16478687110735463, score=0.865564 - 1.8s
[CV] c1=1.0945808137327815, c2=0.05352428934585795 ...................
[CV] c1=1.0945808137327815, c2=0.05352428934585795, score=0.743421 - 2.2s
[CV] c1=0.43125884569175277, c2=0.03408914109225735 ..................
[CV] c1=0.43125884569175277, c2=0.03408914109225735, score=0.860538 - 1.9s
[CV] c1=0.07255895387310529, c2=0.053696431131930934 .................
[CV] c1=0.07255895387310529, c2=0.053696431131930934, score=0.740363 - 1.5s
[CV] c1=0.11680398654439843, c2=0.1066663364975167 ...................
[CV] c1=0.11680398654439843, c2=0.1066663364975167, score=0.885741 - 1.9s
[CV] c1=0.20975711375775957, c2=0.10060795680281127 ..................
[CV] c1=0.20975711375775957, c2=0.10060795680281127, score=0.787617 - 1.9s
[CV] c1=1.434698574838073, c2=0.08311074306861754 ....................
[CV] c1=1.434698574838073, c2=0.08311074306861754, score=0.649414 - 2.2s
[CV] c1=3.0720235164918974, c2=0.007742400041516841 ..................
[CV] c1=3.0720235164918974, c2=0.007742400041516841, score=0.521496 - 1.9s
[CV] c1=0.46783476853418304, c2=0.0944239406963 ......................
[CV] c1=0.46783476853418304, c2=0.0944239406963, score=0.748677 - 1.5s
[CV] c1=0.10897889931461163, c2=0.010750160202335471 .................
[CV] c1=0.10897889931461163, c2=0.010750160202335471, score=0.883403 - 1.8s
[CV] c1=0.08526788571110812, c2=0.13382531105480874 ..................
[CV] c1=0.08526788571110812, c2=0.13382531105480874, score=0.885741 - 1.7s
[CV] c1=0.2821831285504188, c2=0.09370582467361752 ...................
[CV] c1=0.2821831285504188, c2=0.09370582467361752, score=0.790738 - 1.8s
[CV] c1=0.005639683858693419, c2=0.06244427245549233 .................
[CV] c1=0.005639683858693419, c2=0.06244427245549233, score=0.858948 - 1.7s
[CV] c1=1.2515631393023146, c2=0.03183816278568514 ...................
[CV] c1=1.2515631393023146, c2=0.03183816278568514, score=0.865633 - 1.8s
[CV] c1=1.344815889243292, c2=0.15259537559293232 ....................
[CV] c1=1.344815889243292, c2=0.15259537559293232, score=0.653825 - 1.5s
[CV] c1=0.24729397915104762, c2=0.017615681666529773 .................
[CV] c1=0.24729397915104762, c2=0.017615681666529773, score=0.885836 - 1.9s
[CV] c1=0.5724415337066926, c2=0.028938468449420985 ..................
[CV] c1=0.5724415337066926, c2=0.028938468449420985, score=0.900500 - 1.9s
[CV] c1=0.5559377210253521, c2=0.013392070411862562 ..................
[CV] c1=0.5559377210253521, c2=0.013392070411862562, score=0.738467 - 2.0s
[CV] c1=0.5126391482560252, c2=0.04065741496927025 ...................
[CV] c1=0.5126391482560252, c2=0.04065741496927025, score=0.739317 - 1.8s
[CV] c1=1.1290602496930402, c2=0.10292353664811803 ...................
[CV] c1=1.1290602496930402, c2=0.10292353664811803, score=0.738866 - 1.6s
[CV] c1=0.6150671238127792, c2=0.06235479414063233 ...................
[CV] c1=0.6150671238127792, c2=0.06235479414063233, score=0.854778 - 1.9s
[CV] c1=0.08544829519639574, c2=0.1548415335966792 ...................
[CV] c1=0.08544829519639574, c2=0.1548415335966792, score=0.861188 - 1.8s
[CV] c1=0.002603283872351975, c2=0.025222837206245876 ................
[CV] c1=0.002603283872351975, c2=0.025222837206245876, score=0.860729 - 1.8s
[CV] c1=0.13003109865596438, c2=0.016991762037143546 .................
[CV] c1=0.13003109865596438, c2=0.016991762037143546, score=0.849670 - 1.7s
[CV] c1=0.8155542506543331, c2=0.16478687110735463 ...................
[CV] c1=0.8155542506543331, c2=0.16478687110735463, score=0.686666 - 1.5s
[CV] c1=0.04952494262178127, c2=0.04418055648722324 ..................
[CV] c1=0.04952494262178127, c2=0.04418055648722324, score=0.833873 - 1.9s
[CV] c1=0.3209211292696093, c2=0.018635182914399587 ..................
[CV] c1=0.3209211292696093, c2=0.018635182914399587, score=0.915796 - 2.0s
[CV] c1=0.23903951437947946, c2=0.06268396817365848 ..................
[CV] c1=0.23903951437947946, c2=0.06268396817365848, score=0.817622 - 2.0s
[CV] c1=0.049864128666242305, c2=0.00937788807955589 .................
[CV] c1=0.049864128666242305, c2=0.00937788807955589, score=0.867912 - 1.8s
[CV] c1=1.7172114550567856, c2=0.06053114514989168 ...................
[CV] c1=1.7172114550567856, c2=0.06053114514989168, score=0.736704 - 1.7s
[CV] c1=0.0021148540089996554, c2=0.015924680235763298 ...............
[CV] c1=0.0021148540089996554, c2=0.015924680235763298, score=0.787501 - 1.5s
[CV] c1=0.5057303443734367, c2=0.02789198464236502 ...................
[CV] c1=0.5057303443734367, c2=0.02789198464236502, score=0.753249 - 1.4s
[CV] c1=3.0720235164918974, c2=0.007742400041516841 ..................
[CV] c1=3.0720235164918974, c2=0.007742400041516841, score=0.689010 - 1.8s
[CV] c1=1.3078815855488541, c2=0.010394324801136641 ..................
[CV] c1=1.3078815855488541, c2=0.010394324801136641, score=0.683416 - 2.0s
[CV] c1=0.20503295269610408, c2=0.009131358726044252 .................
[CV] c1=0.20503295269610408, c2=0.009131358726044252, score=0.917903 - 1.9s
[CV] c1=0.2522819643096065, c2=0.06893900236916922 ...................
[CV] c1=0.2522819643096065, c2=0.06893900236916922, score=0.923073 - 1.8s
[CV] c1=1.0199632593178567, c2=0.0005001324194679756 .................
[CV] c1=1.0199632593178567, c2=0.0005001324194679756, score=0.874736 - 1.9s
[CV] c1=0.04952494262178127, c2=0.04418055648722324 ..................
[CV] c1=0.04952494262178127, c2=0.04418055648722324, score=0.772468 - 1.4s
[CV] c1=3.6536400451021973, c2=0.0615815143070015 ....................
[CV] c1=3.6536400451021973, c2=0.0615815143070015, score=0.665184 - 1.9s
[CV] c1=0.34806218030922864, c2=0.03125308462899429 ..................
[CV] c1=0.34806218030922864, c2=0.03125308462899429, score=0.761947 - 1.7s
[CV] c1=0.4318150456834849, c2=0.07807671816965212 ...................
[CV] c1=0.4318150456834849, c2=0.07807671816965212, score=0.858256 - 1.7s
[CV] c1=0.011605599912145288, c2=0.00632063180711085 .................
[CV] c1=0.011605599912145288, c2=0.00632063180711085, score=0.872424 - 1.8s
[CV] c1=0.09153402991931628, c2=0.009197816826480097 .................
[CV] c1=0.09153402991931628, c2=0.009197816826480097, score=0.762907 - 1.5s
[CV] c1=1.165531304075132, c2=0.03484536079017848 ....................
[CV] c1=1.165531304075132, c2=0.03484536079017848, score=0.816174 - 1.9s
[CV] c1=0.10076937624770857, c2=0.08050652589661307 ..................
[CV] c1=0.10076937624770857, c2=0.08050652589661307, score=0.873228 - 1.8s
[CV] c1=0.46783476853418304, c2=0.0944239406963 ......................
[CV] c1=0.46783476853418304, c2=0.0944239406963, score=0.849754 - 1.9s
[CV] c1=0.5655947129474109, c2=0.02233672766127511 ...................
[CV] c1=0.5655947129474109, c2=0.02233672766127511, score=0.747610 - 1.6s
[CV] c1=0.4382242721071933, c2=0.11004349156273059 ...................
[CV] c1=0.4382242721071933, c2=0.11004349156273059, score=0.899870 - 1.9s
[CV] c1=0.04632998128229683, c2=0.06907412685996904 ..................
[CV] c1=0.04632998128229683, c2=0.06907412685996904, score=0.861188 - 1.8s
[CV] c1=0.15235847616529405, c2=0.005140820742760215 .................
[CV] c1=0.15235847616529405, c2=0.005140820742760215, score=0.866346 - 1.8s
[CV] c1=3.6536400451021973, c2=0.0615815143070015 ....................
[CV] c1=3.6536400451021973, c2=0.0615815143070015, score=0.585389 - 1.8s
[CV] c1=0.34806218030922864, c2=0.03125308462899429 ..................
[CV] c1=0.34806218030922864, c2=0.03125308462899429, score=0.909871 - 1.9s
[CV] c1=1.0298929909520367, c2=0.03327170617889213 ...................
[CV] c1=1.0298929909520367, c2=0.03327170617889213, score=0.673565 - 2.0s
[CV] c1=0.17296596435454967, c2=0.05822612464424481 ..................
[CV] c1=0.17296596435454967, c2=0.05822612464424481, score=0.771035 - 1.5s
[CV] c1=0.09153402991931628, c2=0.009197816826480097 .................
[CV] c1=0.09153402991931628, c2=0.009197816826480097, score=0.911334 - 1.9s
[CV] c1=0.5028927668221623, c2=0.07023907354239299 ...................
[CV] c1=0.5028927668221623, c2=0.07023907354239299, score=0.745870 - 1.5s
[CV] c1=0.39175621731359517, c2=0.03472523699438633 ..................
[CV] c1=0.39175621731359517, c2=0.03472523699438633, score=0.742776 - 1.4s
[CV] c1=0.12486633054768549, c2=0.020247643480145495 .................
[CV] c1=0.12486633054768549, c2=0.020247643480145495, score=0.899088 - 1.9s
[CV] c1=0.1600048120256439, c2=0.06749727157242567 ...................
[CV] c1=0.1600048120256439, c2=0.06749727157242567, score=0.797318 - 1.9s
[CV] c1=0.021811050212240758, c2=0.06450844323213505 .................
[CV] c1=0.021811050212240758, c2=0.06450844323213505, score=0.834325 - 1.9s
[CV] c1=0.42644807202877966, c2=0.01910944591269954 ..................
[CV] c1=0.42644807202877966, c2=0.01910944591269954, score=0.778922 - 1.8s
[CV] c1=0.7392917194575317, c2=0.004261307031590841 ..................
[CV] c1=0.7392917194575317, c2=0.004261307031590841, score=0.812347 - 1.8s
[CV] c1=0.564524940150662, c2=0.016009223436458803 ...................
[CV] c1=0.564524940150662, c2=0.016009223436458803, score=0.806286 - 1.9s
[CV] c1=1.344815889243292, c2=0.15259537559293232 ....................
[CV] c1=1.344815889243292, c2=0.15259537559293232, score=0.852554 - 1.9s
[CV] c1=0.1781702520377878, c2=0.025004338405887436 ..................
[CV] c1=0.1781702520377878, c2=0.025004338405887436, score=0.799164 - 1.9s
[CV] c1=0.3062891243526067, c2=0.05388728928364015 ...................
[CV] c1=0.3062891243526067, c2=0.05388728928364015, score=0.878036 - 1.9s
[CV] c1=0.09153402991931628, c2=0.009197816826480097 .................
[CV] c1=0.09153402991931628, c2=0.009197816826480097, score=0.813218 - 1.9s
[CV] c1=0.6829291892899357, c2=0.00238956595775298 ...................
[CV] c1=0.6829291892899357, c2=0.00238956595775298, score=0.881338 - 1.7s
[CV] c1=0.7826460218094339, c2=0.029940039961255212 ..................
[CV] c1=0.7826460218094339, c2=0.029940039961255212, score=0.782406 - 1.5s
[CV] c1=0.6150671238127792, c2=0.06235479414063233 ...................
[CV] c1=0.6150671238127792, c2=0.06235479414063233, score=0.721758 - 1.9s
[CV] c1=0.34675400327606554, c2=0.0496007698240786 ...................
[CV] c1=0.34675400327606554, c2=0.0496007698240786, score=0.864900 - 2.0s
[CV] c1=0.002603283872351975, c2=0.025222837206245876 ................
[CV] c1=0.002603283872351975, c2=0.025222837206245876, score=0.779454 - 1.5s
[CV] c1=0.2522819643096065, c2=0.06893900236916922 ...................
[CV] c1=0.2522819643096065, c2=0.06893900236916922, score=0.854961 - 1.9s
[CV] c1=1.0199632593178567, c2=0.0005001324194679756 .................
[CV] c1=1.0199632593178567, c2=0.0005001324194679756, score=0.694659 - 1.9s
[CV] c1=1.0945808137327815, c2=0.05352428934585795 ...................
[CV] c1=1.0945808137327815, c2=0.05352428934585795, score=0.868694 - 1.9s
[CV] c1=0.3209211292696093, c2=0.018635182914399587 ..................
[CV] c1=0.3209211292696093, c2=0.018635182914399587, score=0.790487 - 1.8s
[CV] c1=0.23903951437947946, c2=0.06268396817365848 ..................
[CV] c1=0.23903951437947946, c2=0.06268396817365848, score=0.759450 - 1.5s
[CV] c1=0.3230775045789648, c2=0.10808522186584256 ...................
[CV] c1=0.3230775045789648, c2=0.10808522186584256, score=0.906879 - 1.8s
[CV] c1=0.17296596435454967, c2=0.05822612464424481 ..................
[CV] c1=0.17296596435454967, c2=0.05822612464424481, score=0.905038 - 1.9s
[CV] c1=0.5500497172148461, c2=0.06301710200841153 ...................
[CV] c1=0.5500497172148461, c2=0.06301710200841153, score=0.754746 - 1.5s
[CV] c1=0.5028927668221623, c2=0.07023907354239299 ...................
[CV] c1=0.5028927668221623, c2=0.07023907354239299, score=0.890643 - 1.7s
[CV] c1=0.7826460218094339, c2=0.029940039961255212 ..................
[CV] c1=0.7826460218094339, c2=0.029940039961255212, score=0.708356 - 1.4s
[CV] c1=1.1191828131476678, c2=0.07812650695149906 ...................
[CV] c1=1.1191828131476678, c2=0.07812650695149906, score=0.743421 - 2.0s
[CV] c1=0.34675400327606554, c2=0.0496007698240786 ...................
[CV] c1=0.34675400327606554, c2=0.0496007698240786, score=0.778196 - 1.8s
[CV] c1=0.3534228872262302, c2=0.06996777944064998 ...................
[CV] c1=0.3534228872262302, c2=0.06996777944064998, score=0.851070 - 1.8s
[CV] c1=0.26310619558082143, c2=0.06477532799827239 ..................
[CV] c1=0.26310619558082143, c2=0.06477532799827239, score=0.914145 - 2.3s
[CV] c1=0.8797741184119439, c2=0.04277219171275081 ...................
[CV] c1=0.8797741184119439, c2=0.04277219171275081, score=0.882092 - 2.0s
[CV] c1=0.078525676715756, c2=0.11203131301356009 ....................
[CV] c1=0.078525676715756, c2=0.11203131301356009, score=0.843976 - 2.0s
[CV] c1=0.6034643080105504, c2=0.09205986702839997 ...................
[CV] c1=0.6034643080105504, c2=0.09205986702839997, score=0.725951 - 2.0s
[CV] c1=0.1781702520377878, c2=0.025004338405887436 ..................
[CV] c1=0.1781702520377878, c2=0.025004338405887436, score=0.887452 - 1.9s
[CV] c1=0.3062891243526067, c2=0.05388728928364015 ...................
[CV] c1=0.3062891243526067, c2=0.05388728928364015, score=0.778196 - 2.0s
[CV] c1=0.09153402991931628, c2=0.009197816826480097 .................
[CV] c1=0.09153402991931628, c2=0.009197816826480097, score=0.895693 - 1.9s
[CV] c1=0.6829291892899357, c2=0.00238956595775298 ...................
[CV] c1=0.6829291892899357, c2=0.00238956595775298, score=0.724074 - 1.9s
[CV] c1=0.25976124774631704, c2=0.016125813344577442 .................
[CV] c1=0.25976124774631704, c2=0.016125813344577442, score=0.864900 - 1.9s
[CV] c1=0.046363507556721535, c2=0.0477549796812988 ..................
[CV] c1=0.046363507556721535, c2=0.0477549796812988, score=0.799708 - 1.9s
[CV] c1=0.48889236588787044, c2=0.03331411438297624 ..................
[CV] c1=0.48889236588787044, c2=0.03331411438297624, score=0.900037 - 1.9s
[CV] c1=0.4031086355715093, c2=0.15245013793199164 ...................
[CV] c1=0.4031086355715093, c2=0.15245013793199164, score=0.754417 - 2.0s
[CV] c1=0.25794287148115197, c2=0.040580206830349755 .................
[CV] c1=0.25794287148115197, c2=0.040580206830349755, score=0.925185 - 1.9s
[CV] c1=0.166457809567163, c2=0.13889362459375734 ....................
[CV] c1=0.166457809567163, c2=0.13889362459375734, score=0.787617 - 1.9s
[CV] c1=1.8413017715662978, c2=0.020647440332441275 ..................
[CV] c1=1.8413017715662978, c2=0.020647440332441275, score=0.623991 - 2.0s
[CV] c1=0.34806218030922864, c2=0.03125308462899429 ..................
[CV] c1=0.34806218030922864, c2=0.03125308462899429, score=0.764452 - 1.9s
[CV] c1=1.0298929909520367, c2=0.03327170617889213 ...................
[CV] c1=1.0298929909520367, c2=0.03327170617889213, score=0.743421 - 2.0s
[CV] c1=0.17296596435454967, c2=0.05822612464424481 ..................
[CV] c1=0.17296596435454967, c2=0.05822612464424481, score=0.843976 - 1.9s
[CV] c1=0.04876424311423346, c2=0.020718225795039936 .................
[CV] c1=0.04876424311423346, c2=0.020718225795039936, score=0.786128 - 1.5s
[CV] c1=0.5057303443734367, c2=0.02789198464236502 ...................
[CV] c1=0.5057303443734367, c2=0.02789198464236502, score=0.897480 - 1.6s
[CV] c1=3.0720235164918974, c2=0.007742400041516841 ..................
[CV] c1=3.0720235164918974, c2=0.007742400041516841, score=0.559067 - 1.5s
[CV] c1=0.046363507556721535, c2=0.0477549796812988 ..................
[CV] c1=0.046363507556721535, c2=0.0477549796812988, score=0.749966 - 1.5s
[CV] c1=0.1600048120256439, c2=0.06749727157242567 ...................
[CV] c1=0.1600048120256439, c2=0.06749727157242567, score=0.905038 - 2.0s
[CV] c1=0.021811050212240758, c2=0.06450844323213505 .................
[CV] c1=0.021811050212240758, c2=0.06450844323213505, score=0.861188 - 1.7s
[CV] c1=0.06983810409088079, c2=0.039753081826740366 .................
[CV] c1=0.06983810409088079, c2=0.039753081826740366, score=0.764861 - 1.4s
[CV] c1=0.32313735391716286, c2=0.007886806068654236 .................
[CV] c1=0.32313735391716286, c2=0.007886806068654236, score=0.853884 - 1.8s
[CV] c1=1.0945808137327815, c2=0.05352428934585795 ...................
[CV] c1=1.0945808137327815, c2=0.05352428934585795, score=0.684226 - 1.6s
[CV] c1=0.3523222194631296, c2=0.05593400277276437 ...................
[CV] c1=0.3523222194631296, c2=0.05593400277276437, score=0.862597 - 1.7s
[CV] c1=1.1258449837691988, c2=0.05054416342137652 ...................
[CV] c1=1.1258449837691988, c2=0.05054416342137652, score=0.774150 - 1.8s
[CV] c1=0.3230775045789648, c2=0.10808522186584256 ...................
[CV] c1=0.3230775045789648, c2=0.10808522186584256, score=0.848291 - 1.7s
[CV] c1=0.17296596435454967, c2=0.05822612464424481 ..................
[CV] c1=0.17296596435454967, c2=0.05822612464424481, score=0.791300 - 1.9s
[CV] c1=0.04876424311423346, c2=0.020718225795039936 .................
[CV] c1=0.04876424311423346, c2=0.020718225795039936, score=0.881945 - 1.9s
[CV] c1=0.20719366225700267, c2=0.01588872416231615 ..................
[CV] c1=0.20719366225700267, c2=0.01588872416231615, score=0.779857 - 1.3s
[CV] c1=0.25976124774631704, c2=0.016125813344577442 .................
[CV] c1=0.25976124774631704, c2=0.016125813344577442, score=0.878636 - 1.9s
[CV] c1=0.046363507556721535, c2=0.0477549796812988 ..................
[CV] c1=0.046363507556721535, c2=0.0477549796812988, score=0.846395 - 1.9s
[CV] c1=0.48889236588787044, c2=0.03331411438297624 ..................
[CV] c1=0.48889236588787044, c2=0.03331411438297624, score=0.749517 - 1.9s
[CV] c1=0.4031086355715093, c2=0.15245013793199164 ...................
[CV] c1=0.4031086355715093, c2=0.15245013793199164, score=0.811651 - 1.9s
[CV] c1=0.25794287148115197, c2=0.040580206830349755 .................
[CV] c1=0.25794287148115197, c2=0.040580206830349755, score=0.744685 - 1.6s
[CV] c1=0.005639683858693419, c2=0.06244427245549233 .................
[CV] c1=0.005639683858693419, c2=0.06244427245549233, score=0.834325 - 1.9s
[CV] c1=1.8413017715662978, c2=0.020647440332441275 ..................
[CV] c1=1.8413017715662978, c2=0.020647440332441275, score=0.649831 - 1.5s
[CV] c1=0.6034643080105504, c2=0.09205986702839997 ...................
[CV] c1=0.6034643080105504, c2=0.09205986702839997, score=0.854778 - 2.0s
[CV] c1=0.1781702520377878, c2=0.025004338405887436 ..................
[CV] c1=0.1781702520377878, c2=0.025004338405887436, score=0.867678 - 2.2s
[CV] c1=0.20255253328883313, c2=0.04337614719657083 ..................
[CV] c1=0.20255253328883313, c2=0.04337614719657083, score=0.796775 - 1.9s
[CV] c1=0.18519774522522023, c2=0.023126645342849184 .................
[CV] c1=0.18519774522522023, c2=0.023126645342849184, score=0.865375 - 1.8s
[CV] c1=0.5028927668221623, c2=0.07023907354239299 ...................
[CV] c1=0.5028927668221623, c2=0.07023907354239299, score=0.891300 - 1.8s
[CV] c1=0.8573111416520891, c2=0.03332557158918708 ...................
[CV] c1=0.8573111416520891, c2=0.03332557158918708, score=0.690422 - 1.7s
[CV] c1=0.8593787367606301, c2=0.03082738341727498 ...................
[CV] c1=0.8593787367606301, c2=0.03082738341727498, score=0.774594 - 2.0s
[CV] c1=0.1600048120256439, c2=0.06749727157242567 ...................
[CV] c1=0.1600048120256439, c2=0.06749727157242567, score=0.852183 - 1.8s
[CV] c1=0.021811050212240758, c2=0.06450844323213505 .................
[CV] c1=0.021811050212240758, c2=0.06450844323213505, score=0.809398 - 1.9s
[CV] c1=0.06983810409088079, c2=0.039753081826740366 .................
[CV] c1=0.06983810409088079, c2=0.039753081826740366, score=0.878011 - 1.9s
[CV] c1=0.7392917194575317, c2=0.004261307031590841 ..................
[CV] c1=0.7392917194575317, c2=0.004261307031590841, score=0.720268 - 2.0s
[CV] c1=1.2515631393023146, c2=0.03183816278568514 ...................
[CV] c1=1.2515631393023146, c2=0.03183816278568514, score=0.627627 - 1.9s
[CV] c1=0.3290750359946001, c2=0.013407782998243004 ..................
[CV] c1=0.3290750359946001, c2=0.013407782998243004, score=0.909998 - 1.9s
[CV] c1=0.4318150456834849, c2=0.07807671816965212 ...................
[CV] c1=0.4318150456834849, c2=0.07807671816965212, score=0.901937 - 1.9s
[CV] c1=0.011605599912145288, c2=0.00632063180711085 .................
[CV] c1=0.011605599912145288, c2=0.00632063180711085, score=0.792666 - 2.0s
[CV] c1=0.18519774522522023, c2=0.023126645342849184 .................
[CV] c1=0.18519774522522023, c2=0.023126645342849184, score=0.910242 - 1.9s
[CV] c1=0.5028927668221623, c2=0.07023907354239299 ...................
[CV] c1=0.5028927668221623, c2=0.07023907354239299, score=0.728268 - 1.9s
[CV] c1=0.10076937624770857, c2=0.08050652589661307 ..................
[CV] c1=0.10076937624770857, c2=0.08050652589661307, score=0.887452 - 1.9s
[CV] c1=0.46783476853418304, c2=0.0944239406963 ......................
[CV] c1=0.46783476853418304, c2=0.0944239406963, score=0.744064 - 1.9s
[CV] c1=0.20503295269610408, c2=0.009131358726044252 .................
[CV] c1=0.20503295269610408, c2=0.009131358726044252, score=0.790487 - 1.8s
[CV] c1=0.4382242721071933, c2=0.11004349156273059 ...................
[CV] c1=0.4382242721071933, c2=0.11004349156273059, score=0.762573 - 1.9s
[CV] c1=0.04632998128229683, c2=0.06907412685996904 ..................
[CV] c1=0.04632998128229683, c2=0.06907412685996904, score=0.846395 - 1.9s
[CV] c1=0.04952494262178127, c2=0.04418055648722324 ..................
[CV] c1=0.04952494262178127, c2=0.04418055648722324, score=0.887817 - 1.8s
[CV] c1=0.3523222194631296, c2=0.05593400277276437 ...................
[CV] c1=0.3523222194631296, c2=0.05593400277276437, score=0.908403 - 1.8s
[CV] c1=1.1258449837691988, c2=0.05054416342137652 ...................
[CV] c1=1.1258449837691988, c2=0.05054416342137652, score=0.643244 - 2.1s
[CV] c1=0.237586485398871, c2=0.0044998736653750265 ..................
[CV] c1=0.237586485398871, c2=0.0044998736653750265, score=0.754896 - 1.5s
[CV] c1=0.20255253328883313, c2=0.04337614719657083 ..................
[CV] c1=0.20255253328883313, c2=0.04337614719657083, score=0.842924 - 1.9s
[CV] c1=0.5500497172148461, c2=0.06301710200841153 ...................
[CV] c1=0.5500497172148461, c2=0.06301710200841153, score=0.724074 - 1.9s
[CV] c1=0.5057303443734367, c2=0.02789198464236502 ...................
[CV] c1=0.5057303443734367, c2=0.02789198464236502, score=0.854778 - 1.5s
[CV] c1=0.10076937624770857, c2=0.08050652589661307 ..................
[CV] c1=0.10076937624770857, c2=0.08050652589661307, score=0.849132 - 1.8s
[CV] c1=0.46783476853418304, c2=0.0944239406963 ......................
[CV] c1=0.46783476853418304, c2=0.0944239406963, score=0.891624 - 1.8s
[CV] c1=0.20503295269610408, c2=0.009131358726044252 .................
[CV] c1=0.20503295269610408, c2=0.009131358726044252, score=0.910242 - 1.9s
[CV] c1=0.4382242721071933, c2=0.11004349156273059 ...................
[CV] c1=0.4382242721071933, c2=0.11004349156273059, score=0.760526 - 1.6s
[CV] c1=0.25794287148115197, c2=0.040580206830349755 .................
[CV] c1=0.25794287148115197, c2=0.040580206830349755, score=0.864900 - 1.9s
[CV] c1=0.15235847616529405, c2=0.005140820742760215 .................
[CV] c1=0.15235847616529405, c2=0.005140820742760215, score=0.791157 - 1.5s
[CV] c1=1.2515631393023146, c2=0.03183816278568514 ...................
[CV] c1=1.2515631393023146, c2=0.03183816278568514, score=0.688624 - 1.9s
[CV] c1=0.3290750359946001, c2=0.013407782998243004 ..................
[CV] c1=0.3290750359946001, c2=0.013407782998243004, score=0.782436 - 1.8s
[CV] c1=0.4318150456834849, c2=0.07807671816965212 ...................
[CV] c1=0.4318150456834849, c2=0.07807671816965212, score=0.747046 - 2.0s
[CV] c1=0.20255253328883313, c2=0.04337614719657083 ..................
[CV] c1=0.20255253328883313, c2=0.04337614719657083, score=0.912034 - 1.9s
[CV] c1=0.18519774522522023, c2=0.023126645342849184 .................
[CV] c1=0.18519774522522023, c2=0.023126645342849184, score=0.796573 - 1.8s
[CV] c1=0.5028927668221623, c2=0.07023907354239299 ...................
[CV] c1=0.5028927668221623, c2=0.07023907354239299, score=0.825956 - 1.9s
[CV] c1=0.028717184336666087, c2=0.07464475523861196 .................
[CV] c1=0.028717184336666087, c2=0.07464475523861196, score=0.873004 - 1.8s
[CV] c1=0.4733314263697012, c2=0.12651017307500673 ...................
[CV] c1=0.4733314263697012, c2=0.12651017307500673, score=0.899526 - 1.8s
[CV] c1=0.48889236588787044, c2=0.03331411438297624 ..................
[CV] c1=0.48889236588787044, c2=0.03331411438297624, score=0.745870 - 1.5s
[CV] c1=0.48773956152235637, c2=0.2087716155378857 ...................
[CV] c1=0.48773956152235637, c2=0.2087716155378857, score=0.882366 - 1.8s
[CV] c1=0.42644807202877966, c2=0.01910944591269954 ..................
[CV] c1=0.42644807202877966, c2=0.01910944591269954, score=0.751943 - 1.6s
[CV] c1=0.8155542506543331, c2=0.16478687110735463 ...................
[CV] c1=0.8155542506543331, c2=0.16478687110735463, score=0.748276 - 2.0s
[CV] c1=0.564524940150662, c2=0.016009223436458803 ...................
[CV] c1=0.564524940150662, c2=0.016009223436458803, score=0.898602 - 1.9s
[CV] c1=0.6034643080105504, c2=0.09205986702839997 ...................
[CV] c1=0.6034643080105504, c2=0.09205986702839997, score=0.758214 - 1.5s
[CV] c1=0.026545657089672978, c2=0.08988520513180341 .................
[CV] c1=0.026545657089672978, c2=0.08988520513180341, score=0.866392 - 1.9s
[CV] c1=0.11680398654439843, c2=0.1066663364975167 ...................
[CV] c1=0.11680398654439843, c2=0.1066663364975167, score=0.722783 - 1.5s
[CV] c1=1.7172114550567856, c2=0.06053114514989168 ...................
[CV] c1=1.7172114550567856, c2=0.06053114514989168, score=0.609251 - 1.5s
[CV] c1=0.5500497172148461, c2=0.06301710200841153 ...................
[CV] c1=0.5500497172148461, c2=0.06301710200841153, score=0.845862 - 1.8s
[CV] c1=0.5057303443734367, c2=0.02789198464236502 ...................
[CV] c1=0.5057303443734367, c2=0.02789198464236502, score=0.844103 - 1.6s
[CV] c1=0.028717184336666087, c2=0.07464475523861196 .................
[CV] c1=0.028717184336666087, c2=0.07464475523861196, score=0.834325 - 1.9s
[CV] c1=1.3078815855488541, c2=0.010394324801136641 ..................
[CV] c1=1.3078815855488541, c2=0.010394324801136641, score=0.673764 - 1.5s
[CV] c1=0.48547564926572967, c2=0.12399066402119606 ..................
[CV] c1=0.48547564926572967, c2=0.12399066402119606, score=0.849754 - 1.9s
[CV] c1=0.4031086355715093, c2=0.15245013793199164 ...................
[CV] c1=0.4031086355715093, c2=0.15245013793199164, score=0.745110 - 1.5s
[CV] c1=0.42644807202877966, c2=0.01910944591269954 ..................
[CV] c1=0.42644807202877966, c2=0.01910944591269954, score=0.895591 - 1.8s
[CV] c1=0.8797741184119439, c2=0.04277219171275081 ...................
[CV] c1=0.8797741184119439, c2=0.04277219171275081, score=0.809507 - 1.8s
[CV] c1=0.078525676715756, c2=0.11203131301356009 ....................
[CV] c1=0.078525676715756, c2=0.11203131301356009, score=0.747614 - 1.5s
[CV] c1=0.3209211292696093, c2=0.018635182914399587 ..................
[CV] c1=0.3209211292696093, c2=0.018635182914399587, score=0.860688 - 2.0s
[CV] c1=0.026545657089672978, c2=0.08988520513180341 .................
[CV] c1=0.026545657089672978, c2=0.08988520513180341, score=0.861188 - 1.8s
[CV] c1=0.049864128666242305, c2=0.00937788807955589 .................
[CV] c1=0.049864128666242305, c2=0.00937788807955589, score=0.814156 - 1.4s
[CV] c1=0.17296596435454967, c2=0.05822612464424481 ..................
[CV] c1=0.17296596435454967, c2=0.05822612464424481, score=0.867140 - 1.8s
[CV] c1=0.5500497172148461, c2=0.06301710200841153 ...................
[CV] c1=0.5500497172148461, c2=0.06301710200841153, score=0.845829 - 1.9s
[CV] c1=0.20719366225700267, c2=0.01588872416231615 ..................
[CV] c1=0.20719366225700267, c2=0.01588872416231615, score=0.865692 - 1.4s
[CV] c1=1.1290602496930402, c2=0.10292353664811803 ...................
[CV] c1=1.1290602496930402, c2=0.10292353664811803, score=0.863523 - 1.5s
[CV] c1=0.6150671238127792, c2=0.06235479414063233 ...................
[CV] c1=0.6150671238127792, c2=0.06235479414063233, score=0.720056 - 1.5s
[CV] c1=0.8906768251922592, c2=0.020788077802387873 ..................
[CV] c1=0.8906768251922592, c2=0.020788077802387873, score=0.693453 - 1.5s
[CV] c1=0.10897889931461163, c2=0.010750160202335471 .................
[CV] c1=0.10897889931461163, c2=0.010750160202335471, score=0.881018 - 2.0s
[CV] c1=0.4382242721071933, c2=0.11004349156273059 ...................
[CV] c1=0.4382242721071933, c2=0.11004349156273059, score=0.853496 - 1.8s
[CV] c1=0.04632998128229683, c2=0.06907412685996904 ..................
[CV] c1=0.04632998128229683, c2=0.06907412685996904, score=0.813172 - 1.9s
[CV] c1=0.15235847616529405, c2=0.005140820742760215 .................
[CV] c1=0.15235847616529405, c2=0.005140820742760215, score=0.911785 - 2.0s
[CV] c1=0.3523222194631296, c2=0.05593400277276437 ...................
[CV] c1=0.3523222194631296, c2=0.05593400277276437, score=0.775754 - 1.8s
[CV] c1=0.23903951437947946, c2=0.06268396817365848 ..................
[CV] c1=0.23903951437947946, c2=0.06268396817365848, score=0.915796 - 2.0s
[CV] c1=0.237586485398871, c2=0.0044998736653750265 ..................
[CV] c1=0.237586485398871, c2=0.0044998736653750265, score=0.864654 - 1.8s
[CV] c1=0.4191362584742336, c2=0.016125001294342533 ..................
[CV] c1=0.4191362584742336, c2=0.016125001294342533, score=0.745890 - 1.5s
[CV] c1=0.5500497172148461, c2=0.06301710200841153 ...................
[CV] c1=0.5500497172148461, c2=0.06301710200841153, score=0.889937 - 1.9s
[CV] c1=0.5057303443734367, c2=0.02789198464236502 ...................
[CV] c1=0.5057303443734367, c2=0.02789198464236502, score=0.734274 - 1.8s
[CV] c1=0.39175621731359517, c2=0.03472523699438633 ..................
[CV] c1=0.39175621731359517, c2=0.03472523699438633, score=0.906168 - 1.9s
[CV] c1=0.046363507556721535, c2=0.0477549796812988 ..................
[CV] c1=0.046363507556721535, c2=0.0477549796812988, score=0.858948 - 1.7s
[CV] c1=0.48547564926572967, c2=0.12399066402119606 ..................
[CV] c1=0.48547564926572967, c2=0.12399066402119606, score=0.830237 - 1.9s
[CV] c1=0.4031086355715093, c2=0.15245013793199164 ...................
[CV] c1=0.4031086355715093, c2=0.15245013793199164, score=0.901937 - 1.8s
[CV] c1=0.2821831285504188, c2=0.09370582467361752 ...................
[CV] c1=0.2821831285504188, c2=0.09370582467361752, score=0.749589 - 1.5s
[CV] c1=0.7392917194575317, c2=0.004261307031590841 ..................
[CV] c1=0.7392917194575317, c2=0.004261307031590841, score=0.887554 - 1.9s
[CV] c1=0.564524940150662, c2=0.016009223436458803 ...................
[CV] c1=0.564524940150662, c2=0.016009223436458803, score=0.747102 - 1.5s
[CV] c1=0.9715175264411177, c2=0.09900569873937647 ...................
[CV] c1=0.9715175264411177, c2=0.09900569873937647, score=0.780105 - 1.8s
[CV] c1=0.026545657089672978, c2=0.08988520513180341 .................
[CV] c1=0.026545657089672978, c2=0.08988520513180341, score=0.810739 - 1.9s
[CV] c1=0.049864128666242305, c2=0.00937788807955589 .................
[CV] c1=0.049864128666242305, c2=0.00937788807955589, score=0.851207 - 1.9s
[CV] c1=0.20975711375775957, c2=0.10060795680281127 ..................
[CV] c1=0.20975711375775957, c2=0.10060795680281127, score=0.912034 - 1.9s
[CV] c1=1.434698574838073, c2=0.08311074306861754 ....................
[CV] c1=1.434698574838073, c2=0.08311074306861754, score=0.660369 - 1.4s
[CV] c1=0.20719366225700267, c2=0.01588872416231615 ..................
[CV] c1=0.20719366225700267, c2=0.01588872416231615, score=0.784921 - 1.6s
[CV] c1=0.7826460218094339, c2=0.029940039961255212 ..................
[CV] c1=0.7826460218094339, c2=0.029940039961255212, score=0.820096 - 1.4s
[CV] c1=1.1191828131476678, c2=0.07812650695149906 ...................
[CV] c1=1.1191828131476678, c2=0.07812650695149906, score=0.807777 - 1.9s
[CV] c1=0.8906768251922592, c2=0.020788077802387873 ..................
[CV] c1=0.8906768251922592, c2=0.020788077802387873, score=0.704550 - 2.0s
[CV] c1=0.3534228872262302, c2=0.06996777944064998 ...................
[CV] c1=0.3534228872262302, c2=0.06996777944064998, score=0.899526 - 2.0s
[CV] c1=0.26310619558082143, c2=0.06477532799827239 ..................
[CV] c1=0.26310619558082143, c2=0.06477532799827239, score=0.754014 - 1.5s
[CV] c1=1.0199632593178567, c2=0.0005001324194679756 .................
[CV] c1=1.0199632593178567, c2=0.0005001324194679756, score=0.662386 - 1.5s
[CV] c1=0.166457809567163, c2=0.13889362459375734 ....................
[CV] c1=0.166457809567163, c2=0.13889362459375734, score=0.854423 - 1.8s
[CV] c1=1.8413017715662978, c2=0.020647440332441275 ..................
[CV] c1=1.8413017715662978, c2=0.020647440332441275, score=0.718886 - 1.9s
[CV] c1=0.3290750359946001, c2=0.013407782998243004 ..................
[CV] c1=0.3290750359946001, c2=0.013407782998243004, score=0.854183 - 1.9s
[CV] c1=0.4318150456834849, c2=0.07807671816965212 ...................
[CV] c1=0.4318150456834849, c2=0.07807671816965212, score=0.860154 - 1.9s
[CV] c1=0.20255253328883313, c2=0.04337614719657083 ..................
[CV] c1=0.20255253328883313, c2=0.04337614719657083, score=0.846998 - 1.8s
[CV] c1=0.18519774522522023, c2=0.023126645342849184 .................
[CV] c1=0.18519774522522023, c2=0.023126645342849184, score=0.843195 - 2.0s
[CV] c1=0.20719366225700267, c2=0.01588872416231615 ..................
[CV] c1=0.20719366225700267, c2=0.01588872416231615, score=0.910242 - 1.6s
[CV] c1=0.8573111416520891, c2=0.03332557158918708 ...................
[CV] c1=0.8573111416520891, c2=0.03332557158918708, score=0.809494 - 1.6s
[CV] c1=0.8593787367606301, c2=0.03082738341727498 ...................
[CV] c1=0.8593787367606301, c2=0.03082738341727498, score=0.813595 - 1.8s
[CV] c1=0.08544829519639574, c2=0.1548415335966792 ...................
[CV] c1=0.08544829519639574, c2=0.1548415335966792, score=0.765249 - 1.5s
[CV] c1=0.5655947129474109, c2=0.02233672766127511 ...................
[CV] c1=0.5655947129474109, c2=0.02233672766127511, score=0.834417 - 2.1s
[CV] c1=0.13003109865596438, c2=0.016991762037143546 .................
[CV] c1=0.13003109865596438, c2=0.016991762037143546, score=0.773943 - 1.5s
[CV] c1=1.0199632593178567, c2=0.0005001324194679756 .................
[CV] c1=1.0199632593178567, c2=0.0005001324194679756, score=0.804897 - 1.7s
[CV] c1=0.04952494262178127, c2=0.04418055648722324 ..................
[CV] c1=0.04952494262178127, c2=0.04418055648722324, score=0.858948 - 1.7s
[CV] c1=0.3523222194631296, c2=0.05593400277276437 ...................
[CV] c1=0.3523222194631296, c2=0.05593400277276437, score=0.749741 - 1.6s
[CV] c1=0.34806218030922864, c2=0.03125308462899429 ..................
[CV] c1=0.34806218030922864, c2=0.03125308462899429, score=0.864900 - 1.9s
[CV] c1=0.3230775045789648, c2=0.10808522186584256 ...................
[CV] c1=0.3230775045789648, c2=0.10808522186584256, score=0.776754 - 1.9s
[CV] c1=0.4191362584742336, c2=0.016125001294342533 ..................
[CV] c1=0.4191362584742336, c2=0.016125001294342533, score=0.908279 - 2.0s
[CV] c1=0.04876424311423346, c2=0.020718225795039936 .................
[CV] c1=0.04876424311423346, c2=0.020718225795039936, score=0.854961 - 1.9s
[CV] c1=0.5947449801198732, c2=0.01932052560615957 ...................
[CV] c1=0.5947449801198732, c2=0.01932052560615957, score=0.891920 - 1.5s
[CV] c1=1.1290602496930402, c2=0.10292353664811803 ...................
[CV] c1=1.1290602496930402, c2=0.10292353664811803, score=0.631762 - 1.6s
[CV] c1=0.6150671238127792, c2=0.06235479414063233 ...................
[CV] c1=0.6150671238127792, c2=0.06235479414063233, score=0.825486 - 1.8s
[CV] c1=0.08544829519639574, c2=0.1548415335966792 ...................
[CV] c1=0.08544829519639574, c2=0.1548415335966792, score=0.880176 - 1.7s
[CV] c1=0.3534228872262302, c2=0.06996777944064998 ...................
[CV] c1=0.3534228872262302, c2=0.06996777944064998, score=0.870287 - 2.0s
[CV] c1=0.13003109865596438, c2=0.016991762037143546 .................
[CV] c1=0.13003109865596438, c2=0.016991762037143546, score=0.799708 - 1.9s
[CV] c1=0.8155542506543331, c2=0.16478687110735463 ...................
[CV] c1=0.8155542506543331, c2=0.16478687110735463, score=0.783683 - 1.8s
[CV] c1=0.3482734344654556, c2=0.10182268088558233 ...................
[CV] c1=0.3482734344654556, c2=0.10182268088558233, score=0.846069 - 2.0s
[CV] c1=0.43125884569175277, c2=0.03408914109225735 ..................
[CV] c1=0.43125884569175277, c2=0.03408914109225735, score=0.762359 - 1.6s
[CV] c1=0.026545657089672978, c2=0.08988520513180341 .................
[CV] c1=0.026545657089672978, c2=0.08988520513180341, score=0.773444 - 1.5s
[CV] c1=0.237586485398871, c2=0.0044998736653750265 ..................
[CV] c1=0.237586485398871, c2=0.0044998736653750265, score=0.896361 - 2.0s
[CV] c1=0.4191362584742336, c2=0.016125001294342533 ..................
[CV] c1=0.4191362584742336, c2=0.016125001294342533, score=0.862707 - 1.7s
[CV] c1=0.04876424311423346, c2=0.020718225795039936 .................
[CV] c1=0.04876424311423346, c2=0.020718225795039936, score=0.810739 - 1.9s
[CV] c1=0.20719366225700267, c2=0.01588872416231615 ..................
[CV] c1=0.20719366225700267, c2=0.01588872416231615, score=0.840517 - 1.6s
[CV] c1=0.8573111416520891, c2=0.03332557158918708 ...................
[CV] c1=0.8573111416520891, c2=0.03332557158918708, score=0.695729 - 1.3s
[CV] c1=0.6150671238127792, c2=0.06235479414063233 ...................
[CV] c1=0.6150671238127792, c2=0.06235479414063233, score=0.882212 - 1.8s
[CV] c1=0.8906768251922592, c2=0.020788077802387873 ..................
[CV] c1=0.8906768251922592, c2=0.020788077802387873, score=0.836433 - 1.9s
[CV] c1=0.3534228872262302, c2=0.06996777944064998 ...................
[CV] c1=0.3534228872262302, c2=0.06996777944064998, score=0.770431 - 1.9s
[CV] c1=0.26310619558082143, c2=0.06477532799827239 ..................
[CV] c1=0.26310619558082143, c2=0.06477532799827239, score=0.789991 - 1.9s
[CV] c1=0.32313735391716286, c2=0.007886806068654236 .................
[CV] c1=0.32313735391716286, c2=0.007886806068654236, score=0.871419 - 1.9s
[CV] c1=0.3482734344654556, c2=0.10182268088558233 ...................
[CV] c1=0.3482734344654556, c2=0.10182268088558233, score=0.762573 - 1.9s
[CV] c1=0.9715175264411177, c2=0.09900569873937647 ...................
[CV] c1=0.9715175264411177, c2=0.09900569873937647, score=0.647341 - 1.9s
[CV] c1=0.24729397915104762, c2=0.017615681666529773 .................
[CV] c1=0.24729397915104762, c2=0.017615681666529773, score=0.912741 - 2.0s
[CV] c1=0.11680398654439843, c2=0.1066663364975167 ...................
[CV] c1=0.11680398654439843, c2=0.1066663364975167, score=0.793635 - 1.9s
[CV] c1=0.5559377210253521, c2=0.013392070411862562 ..................
[CV] c1=0.5559377210253521, c2=0.013392070411862562, score=0.904048 - 1.9s
[CV] c1=1.165531304075132, c2=0.03484536079017848 ....................
[CV] c1=1.165531304075132, c2=0.03484536079017848, score=0.691696 - 1.6s
[CV] c1=0.45885612696589256, c2=0.13838286852102 .....................
[CV] c1=0.45885612696589256, c2=0.13838286852102, score=0.740178 - 1.3s
[CV] c1=0.10076937624770857, c2=0.08050652589661307 ..................
[CV] c1=0.10076937624770857, c2=0.08050652589661307, score=0.755452 - 1.6s
[CV] c1=0.4733314263697012, c2=0.12651017307500673 ...................
[CV] c1=0.4733314263697012, c2=0.12651017307500673, score=0.849754 - 1.9s
[CV] c1=0.10897889931461163, c2=0.010750160202335471 .................
[CV] c1=0.10897889931461163, c2=0.010750160202335471, score=0.799164 - 1.9s
[CV] c1=0.08526788571110812, c2=0.13382531105480874 ..................
[CV] c1=0.08526788571110812, c2=0.13382531105480874, score=0.843976 - 1.9s
[CV] c1=0.04632998128229683, c2=0.06907412685996904 ..................
[CV] c1=0.04632998128229683, c2=0.06907412685996904, score=0.762873 - 1.5s
[CV] c1=0.166457809567163, c2=0.13889362459375734 ....................
[CV] c1=0.166457809567163, c2=0.13889362459375734, score=0.899168 - 1.9s
[CV] c1=1.8413017715662978, c2=0.020647440332441275 ..................
[CV] c1=1.8413017715662978, c2=0.020647440332441275, score=0.616944 - 1.9s
[CV] c1=0.3290750359946001, c2=0.013407782998243004 ..................
[CV] c1=0.3290750359946001, c2=0.013407782998243004, score=0.869236 - 1.9s
[CV] c1=1.0298929909520367, c2=0.03327170617889213 ...................
[CV] c1=1.0298929909520367, c2=0.03327170617889213, score=0.720187 - 1.4s
[CV] c1=0.3062891243526067, c2=0.05388728928364015 ...................
[CV] c1=0.3062891243526067, c2=0.05388728928364015, score=0.862597 - 1.8s
[CV] c1=0.3772307005646545, c2=0.034457848007251664 ..................
[CV] c1=0.3772307005646545, c2=0.034457848007251664, score=0.762794 - 1.5s
[CV] c1=1.434698574838073, c2=0.08311074306861754 ....................
[CV] c1=1.434698574838073, c2=0.08311074306861754, score=0.765848 - 1.8s
[CV] c1=0.45885612696589256, c2=0.13838286852102 .....................
[CV] c1=0.45885612696589256, c2=0.13838286852102, score=0.819917 - 1.2s
[CV] c1=0.39175621731359517, c2=0.03472523699438633 ..................
[CV] c1=0.39175621731359517, c2=0.03472523699438633, score=0.849821 - 1.7s
[CV] c1=0.046363507556721535, c2=0.0477549796812988 ..................
[CV] c1=0.046363507556721535, c2=0.0477549796812988, score=0.887371 - 1.8s
[CV] c1=0.48547564926572967, c2=0.12399066402119606 ..................
[CV] c1=0.48547564926572967, c2=0.12399066402119606, score=0.726644 - 1.9s
[CV] c1=0.48773956152235637, c2=0.2087716155378857 ...................
[CV] c1=0.48773956152235637, c2=0.2087716155378857, score=0.817686 - 1.9s
[CV] c1=0.2821831285504188, c2=0.09370582467361752 ...................
[CV] c1=0.2821831285504188, c2=0.09370582467361752, score=0.892680 - 1.9s
[CV] c1=0.005639683858693419, c2=0.06244427245549233 .................
[CV] c1=0.005639683858693419, c2=0.06244427245549233, score=0.776954 - 1.5s
[CV] c1=0.078525676715756, c2=0.11203131301356009 ....................
[CV] c1=0.078525676715756, c2=0.11203131301356009, score=0.855897 - 1.7s
[CV] c1=0.9715175264411177, c2=0.09900569873937647 ...................
[CV] c1=0.9715175264411177, c2=0.09900569873937647, score=0.777550 - 1.8s
[CV] c1=0.24729397915104762, c2=0.017615681666529773 .................
[CV] c1=0.24729397915104762, c2=0.017615681666529773, score=0.766653 - 1.5s
[CV] c1=0.237586485398871, c2=0.0044998736653750265 ..................
[CV] c1=0.237586485398871, c2=0.0044998736653750265, score=0.908780 - 1.9s
[CV] c1=1.7172114550567856, c2=0.06053114514989168 ...................
[CV] c1=1.7172114550567856, c2=0.06053114514989168, score=0.837512 - 1.9s
[CV] c1=0.0021148540089996554, c2=0.015924680235763298 ...............
[CV] c1=0.0021148540089996554, c2=0.015924680235763298, score=0.800717 - 1.9s
[CV] c1=0.5947449801198732, c2=0.01932052560615957 ...................
[CV] c1=0.5947449801198732, c2=0.01932052560615957, score=0.827836 - 1.4s
[CV] c1=0.39175621731359517, c2=0.03472523699438633 ..................
[CV] c1=0.39175621731359517, c2=0.03472523699438633, score=0.908381 - 2.0s
[CV] c1=0.4733314263697012, c2=0.12651017307500673 ...................
[CV] c1=0.4733314263697012, c2=0.12651017307500673, score=0.830237 - 1.8s
[CV] c1=0.48889236588787044, c2=0.03331411438297624 ..................
[CV] c1=0.48889236588787044, c2=0.03331411438297624, score=0.845953 - 1.9s
[CV] c1=0.08526788571110812, c2=0.13382531105480874 ..................
[CV] c1=0.08526788571110812, c2=0.13382531105480874, score=0.760672 - 1.5s
[CV] c1=0.42644807202877966, c2=0.01910944591269954 ..................
[CV] c1=0.42644807202877966, c2=0.01910944591269954, score=0.870287 - 1.9s
[CV] c1=0.005639683858693419, c2=0.06244427245549233 .................
[CV] c1=0.005639683858693419, c2=0.06244427245549233, score=0.880176 - 1.8s
[CV] c1=1.2515631393023146, c2=0.03183816278568514 ...................
[CV] c1=1.2515631393023146, c2=0.03183816278568514, score=0.689271 - 1.5s
[CV] c1=0.43125884569175277, c2=0.03408914109225735 ..................
[CV] c1=0.43125884569175277, c2=0.03408914109225735, score=0.855250 - 1.8s
[CV] c1=0.24729397915104762, c2=0.017615681666529773 .................
[CV] c1=0.24729397915104762, c2=0.017615681666529773, score=0.864900 - 1.9s
[CV] c1=0.11680398654439843, c2=0.1066663364975167 ...................
[CV] c1=0.11680398654439843, c2=0.1066663364975167, score=0.872459 - 1.9s
[CV] c1=0.5559377210253521, c2=0.013392070411862562 ..................
[CV] c1=0.5559377210253521, c2=0.013392070411862562, score=0.736068 - 1.5s
[CV] c1=0.0021148540089996554, c2=0.015924680235763298 ...............
[CV] c1=0.0021148540089996554, c2=0.015924680235763298, score=0.797677 - 1.9s
[CV] c1=0.45885612696589256, c2=0.13838286852102 .....................
[CV] c1=0.45885612696589256, c2=0.13838286852102, score=0.882446 - 1.4s
Training done in: 26.332006s
Saving training model...
Saving training model done in: 0.013709s
*********************************
Prediction done in: 0.044960s