training_validation_v10.py
17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# -*- coding: UTF-8 -*-
import os
from itertools import chain
from optparse import OptionParser
from time import time
from collections import Counter
import re
import nltk
import sklearn
import scipy.stats
import sys
from sklearn.externals import joblib
from sklearn.metrics import make_scorer
from sklearn.cross_validation import cross_val_score
from sklearn.grid_search import RandomizedSearchCV
import sklearn_crfsuite
from sklearn_crfsuite import scorers
from sklearn_crfsuite import metrics
from pandas import DataFrame as DF
from nltk.corpus import stopwords
# Objective
# Training and evaluation of CRFs with sklearn-crfsuite.
#
# Input parameters
# --inputPath=PATH Path of training and test data set
# --trainingFile File with training data set
# --testFile File with test data set
# --outputPath=PATH Output path to place output files
# --nameGrid Number of run
# --version Version Report
# --nrules Number of crf transitions
# Output
# 1) Best model
# 2) Report
# Examples
# python training_validation_v10.py
# --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
# --trainingFile training-data-set-70.txt
# --testFile test-data-set-30.txt
# --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/
# --version _v1
# --nrules 50
# python3 training_validation_v9.py --inputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets --trainingFile training-data-set-70.txt --testFile test-data-set-30.txt --outputPath /home/egaytan/automatic-extraction-growth-conditions/CRF/ --nameGrid Run1 --version _v1 --S1 --S2 --S3 --nrules 50
##################################################################
# FEATURES #
##################################################################
#================== COMPLETE WORD FEATURES ======================#
def isGreek(word):
## Complete word are greek letters
alphabet = ['Α','Β','Γ','Δ','Ε','Ζ','Η','Θ','Ι','Κ','Λ','Μ','Ν','Ξ','Ο','Π','Ρ','Σ','Τ','Υ','Φ','Χ','Ψ','Ω',
'α','β','γ','δ','ε','ζ','η','θ','ι','κ','λ','μ','ν','ξ','ο','π','ρ','ς','σ','τ','υ','φ','χ','ψ','ω']
if word in alphabet:
return True
else:
return False
#================ INNER OF THE WORD FEATURES ====================#
def hNumber(word):
## Al leats has one greek letter
for l in word:
if l.isdigit():
return True
return False
def symb(word):
n=0
## At least a not alphanumeric character
for l in word:
if l.isdigit(): n = n+1
if l.isalpha(): n = n+1
#Exclude Greek letters
if isGreek(l): n = n+1
if n<len(word): return True
else: return False
def hUpper(word):
## At least an upper letter
for l in word:
if l.isupper(): return True
return False
def hLower(word):
## At least a lower letter
for l in word:
if l.islower(): return True
return False
def hGreek(word):
## At least a greek letter
for l in word:
if isGreek(l): return True
return False
#============================FEATURES===========================#
def word2features(sent, i, S1, S2, S3):
## Getting word features
## Saving CoreNLP annotations
listElem = sent[i].split('|')
word = listElem[0]
lemma = listElem[1]
postag = listElem[2]
#ner = listElem[4]
#=========================== G =============================#
## NAME LEVEL G
## FUTURE TYPE General features
features = {
## basal features
'lemma': lemma,
'postag': postag
}
## more tha one word in sentence
if i > 0:
## Anterior word
listElem = sent[i - 1].split('|')
## Saving CoreNLP annotations
lemma0 = listElem[1]
postag0 = listElem[2]
features.update({
#LemaG anterior
'-1:lemma': lemma0,
#Postag anterior
'-1:postag': postag0,
})
## is not the last word
if i < len(sent) - 1:
## Posterior word
listElem = sent[i + 1].split('|')
## Saving CoreNLP annotations
lemma2 = listElem[1]
postag2 = listElem[2]
features.update({
#LemaG posterior
'+1:lemma': lemma2,
#Postag posterior
'+1:postag': postag2,
})
#=========================== S1 =============================#
## NAME LEVEL S1
## FEATURE TYPE Inner word features
if S1:
#Add features
features['hUpper']= hUpper(word)
features['hLower']= hUpper(word)
features['hGreek']= hGreek(word)
features['symb']= symb(word)
#word firstChar
features['word[:1]']= word[:1]
#word secondChar
if len(word)>1:
features['word[:2]']= word[:2]
'''
#lemma and postag firstChar
features['lemma[:1]']= lemma[:1]
features['postag[:1]']= postag[:1]
#lemma and postag secondChar
if len(lemma)>1:
features['lemma[:2]']= lemma[:2]
if len(postag)>1:
features['postag[:2]']= postag[:2]
'''
#=========================== S2 =============================#
## NAME LEVEL S2
## FEATURE TYPE Complete word features
if S2:
#Add features
features['word']= word
features['isUpper']= word.isupper()
features['isLower']= word.islower()
features['isGreek']= isGreek(word)
features['isNumber']= word.isdigit()
## more tha one word in sentence
if i > 0:
## Anterior word
listElem = sent[i - 1].split('|')
## Saving CoreNLP annotations
word0 = listElem[0]
features['-1:word']= word0
## is not the last word
if i < len(sent)-1:
listElem = sent[i + 1].split('|')
## Saving CoreNLP annotations
word2 = listElem[0]
## Posterior word
features['+1:word']= word2
#=========================== S3 =============================#
## NAME LEVEL S3
## FEATURE TYPE Extended context features
if S3:
## more tha two words in sentence
if i > 1:
## two anterior lemma and postag
listElem = sent[i - 2].split('|')
## Saving CoreNLP annotations
lemma01 = listElem[1]
postag01 = listElem[2]
features['-2:lemma']= lemma01
features['-2:postag']= postag01
## is not the penultimate word
if i < len(sent) - 2:
listElem = sent[i + 2].split('|')
## Saving CoreNLP annotations
lemma02 = listElem[1]
postag02 = listElem[2]
## two posterior lemma and postag
features['+2:lemma']= lemma02
features['+2:postag']= postag02
return features
def sent2features(sent, S1, S2, S3):
## Itering in sentence for each word and saving its features
return [word2features(sent, i, S1, S2, S3) for i in range(len(sent))]
def sent2labels(sent):
## 3rd position by word is the label
return [elem.split('|')[3] for elem in sent]
def sent2tokens(sent):
return [token for token, postag, label in sent]
def print_transitions(trans_features, f):
for (label_from, label_to), weight in trans_features:
f.write("{:6} -> {:7} {:0.6f}\n".format(label_from, label_to, weight))
def print_state_features(state_features, f):
for (attr, label), weight in state_features:
f.write("{:0.6f} {:8} {}\n".format(weight, label, attr.encode("utf-8")))
__author__ = 'egaytan'
##################################################################
# MAIN PROGRAM #
##################################################################
if __name__ == "__main__":
## Defining parameters
parser = OptionParser()
parser.add_option("--inputPath", dest="inputPath", help="Path of training data set", metavar="PATH")
parser.add_option("--outputPath", dest="outputPath", help="Output path to place output files", metavar="PATH")
parser.add_option("--trainingFile", dest="trainingFile", help="File with training data set", metavar="FILE")
parser.add_option("--testFile", dest="testFile", help="File with test data set", metavar="FILE")
parser.add_option("--Gridname", dest="Gridname", help="Report number run", metavar="FILE")
parser.add_option("--version", dest="version", help="Report file", metavar="FILE")
parser.add_option("--S1", dest="S1", help="Future Type", action="store_true", default=False)
parser.add_option("--S2", dest="S2", help="Future Type", action="store_true", default=False)
parser.add_option("--S3", dest="S3", help="Future Type", action="store_true", default=False)
parser.add_option("--excludeStopWords", dest="excludeStopWords",help="Exclude stop words", action="store_true", default=False)
parser.add_option("--excludeSymbols", dest="excludeSymbols", help="Exclude punctuation marks", action="store_true", default=False)
parser.add_option("--nrules", dest="nrules", help="Number of crf rules on report", type="int")
(options, args) = parser.parse_args()
if len(args) > 0:
parser.error("Any parameter given.")
sys.exit(1)
print('-------------------------------- PARAMETERS --------------------------------')
print("Path of training data set: " + options.inputPath)
print("File with training data set: " + str(options.trainingFile))
print("Path of test data set: " + options.inputPath)
print("File with test data set: " + str(options.testFile))
print("Exclude stop words: " + str(options.excludeStopWords))
print("Levels: " + str(options.S1) + " " + str(options.S2))
print("Report file: " + str(options.version))
print("Number of rules on report file: " + str(options.nrules))
symbols = ['.', ',', ':', ';', '?', '!', '\'', '"', '<', '>', '(', ')', '-', '_', '/', '\\', '¿', '¡', '+', '{',
'}', '[', ']', '*', '%', '$', '#', '&', '°', '`', '...']
print("Exclude symbols: " + str(options.excludeSymbols))
print('-------------------------------- PROCESSING --------------------------------')
print('Reading corpus...')
t0 = time()
sentencesTrainingData = []
sentencesTestData = []
stopwords = [word for word in stopwords.words('english')]
with open(os.path.join(options.inputPath, options.trainingFile), "r") as iFile:
for line in iFile.readlines():
listLine = []
line = line.strip('\n')
for token in line.split():
if options.excludeStopWords:
listToken = token.split('|')
lemma = listToken[1]
if lemma in stopwords:
continue
if options.excludeSymbols:
listToken = token.split('|')
lemma = listToken[1]
if lemma in symbols:
continue
listLine.append(token)
sentencesTrainingData.append(listLine)
print(" Sentences training data: " + str(len(sentencesTrainingData)))
with open(os.path.join(options.inputPath, options.testFile), "r") as iFile:
for line in iFile.readlines():
listLine = []
line = line.strip('\n')
for token in line.split():
if options.excludeStopWords:
listToken = token.split('|')
lemma = listToken[1]
if lemma in stopwords:
continue
if options.excludeSymbols:
listToken = token.split('|')
lemma = listToken[1]
if lemma in symbols:
continue
listLine.append(token)
sentencesTestData.append(listLine)
print(" Sentences test data: " + str(len(sentencesTestData)))
print("Reading corpus done in: %fs" % (time() - t0))
print('-------------------------------- FEATURES --------------------------------')
Dtraning = sent2features(sentencesTrainingData[0], options.S1, options.S2, options.S3)[2]
Dtest = sent2features(sentencesTestData[0], options.S1, options.S2, options.S3)[2]
print('--------------------------Features Training ---------------------------')
print(DF(list(Dtraning.items())))
print('--------------------------- FeaturesTest -----------------------------')
print(DF(list(Dtest.items())))
t0 = time()
X_train = [sent2features(s, options.S1, options.S2, options.S3) for s in sentencesTrainingData]
y_train = [sent2labels(s) for s in sentencesTrainingData]
X_test = [sent2features(s, options.S1, options.S2, options.S3) for s in sentencesTestData]
# print X_test
y_test = [sent2labels(s) for s in sentencesTestData]
# Fixed parameters
# crf = sklearn_crfsuite.CRF(
# algorithm='lbfgs',
# c1=0.1,
# c2=0.1,
# max_iterations=100,
# all_pgossible_transitions=True
# )
# Hyperparameter Optimization
crf = sklearn_crfsuite.CRF(
algorithm='lbfgs',
max_iterations=100,
all_possible_transitions=True
)
params_space = {
'c1': scipy.stats.expon(scale=0.5),
'c2': scipy.stats.expon(scale=0.05),
}
# Original: labels = list(crf.classes_)
# Original: labels.remove('O')
labels = list(['Gtype', 'Gversion', 'Med', 'Phase', 'Strain', 'Substrain', 'Supp', 'Technique', 'Temp', 'OD', 'Anti', 'Agit', 'Air', 'Vess', 'pH'])
# use the same metric for evaluation
f1_scorer = make_scorer(metrics.flat_f1_score,
average='weighted', labels=labels)
# search
rs = RandomizedSearchCV(crf, params_space,
cv=10,
verbose=3,
n_jobs=-1,
n_iter=20,
# n_iter=50,
scoring=f1_scorer)
rs.fit(X_train, y_train)
# Fixed parameters
# crf.fit(X_train, y_train)
# Best hiperparameters
# crf = rs.best_estimator_
nameReport = str(options.Gridname) + str(options.version) + '.txt'
with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="w") as oFile:
oFile.write("********** TRAINING AND TESTING REPORT **********\n")
oFile.write("Training file: " + options.trainingFile + '\n')
oFile.write('\n')
oFile.write('best params:' + str(rs.best_params_) + '\n')
oFile.write('best CV score:' + str(rs.best_score_) + '\n')
oFile.write('model size: {:0.2f}M\n'.format(rs.best_estimator_.size_ / 1000000))
print("Training done in: %fs" % (time() - t0))
t0 = time()
# Update best crf
crf = rs.best_estimator_
# Saving model
print(" Saving training model...")
t1 = time()
nameModel = 'model_S1_' + str(options.S1) + '_S2_' + str(options.S2) + '_S3_' + str(options.S3) + '_' + str(options.Gridname) + str(options.version) + '.mod'
joblib.dump(crf, os.path.join(options.outputPath, "models", nameModel))
print(" Saving training model done in: %fs" % (time() - t1))
# Evaluation against test data
y_pred = crf.predict(X_test)
print("*********************************")
print("Prediction done in: %fs" % (time() - t0))
# labels = list(crf.classes_)
# labels.remove('O')
with open(os.path.join(options.outputPath, "reports", "report_" + nameReport), mode="a") as oFile:
oFile.write('\n')
oFile.write("Flat F1: " + str(metrics.flat_f1_score(y_test, y_pred, average='weighted', labels=labels)))
oFile.write('\n')
# labels = list(crf.classes_)
sorted_labels = sorted(
labels,
key=lambda name: (name[1:], name[0])
)
oFile.write(metrics.flat_classification_report(
y_test, y_pred, labels=sorted_labels, digits=3
))
oFile.write('\n')
oFile.write("\nTop likely transitions:\n")
print_transitions(Counter(crf.transition_features_).most_common(options.nrules()), oFile)
oFile.write('\n')
oFile.write("\nTop unlikely transitions:\n")
print_transitions(Counter(crf.transition_features_).most_common()[-options.nrules():], oFile)
oFile.write('\n')
oFile.write("\nTop positive:\n")
print_state_features(Counter(crf.state_features_).most_common(200), oFile)
oFile.write('\n')
oFile.write("\nTop negative:\n")
print_state_features(Counter(crf.state_features_).most_common()[-200:], oFile)
oFile.write('\n')