Run5_v10.txt 29.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: False False
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003733s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
           0         1
0      lemma         2
1     postag        CD
2   -1:lemma  fructose
3  -1:postag        NN
4   -2:lemma       Cra
5  -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
           0           1
0      lemma  delta-arca
1     postag          NN
2   -1:lemma           _
3  -1:postag          NN
4   +1:lemma           _
5  +1:postag          CD
6   -2:lemma     affyexp
7  -2:postag          JJ
8   +2:lemma     glucose
9  +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.612120 -   0.9s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.884047 -   1.2s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.835967 -   1.3s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.892074 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.782679 -   1.2s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.941312 -   1.3s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.942944 -   1.3s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.836305 -   1.4s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.891300 -   1.2s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.866806 -   0.9s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.722395 -   1.3s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.924842 -   1.3s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.722395 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.697995 -   1.3s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.773327 -   0.7s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.850992 -   1.4s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.722395 -   1.3s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.796785 -   1.3s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.620509 -   1.3s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.880963 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.806609 -   1.1s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.830824 -   1.3s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.672936 -   1.1s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.806478 -   1.2s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.855013 -   1.0s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.842052 -   1.2s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.850677 -   1.4s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.694375 -   1.3s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.884047 -   1.2s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.694375 -   1.0s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.864680 -   1.2s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.850314 -   1.3s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.954937 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.783151 -   1.4s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.888803 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.911799 -   1.1s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.722395 -   1.3s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.731953 -   1.3s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.864680 -   1.1s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.813162 -   0.8s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.796785 -   1.3s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.903868 -   1.3s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.913784 -   1.3s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.925944 -   1.3s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.799307 -   0.9s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.925790 -   1.4s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.843508 -   1.2s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.889632 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.806520 -   1.3s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.906118 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.720990 -   1.4s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.894372 -   1.2s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.870921 -   1.2s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.796785 -   1.3s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.924842 -   1.0s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.935724 -   1.2s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.942868 -   1.2s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.842052 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.801130 -   1.3s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.796785 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.647266 -   1.2s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.889602 -   1.1s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.942868 -   1.3s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.850992 -   1.4s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.717373 -   1.3s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.858590 -   1.2s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.925790 -   1.3s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.795650 -   1.1s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.927267 -   1.3s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.835695 -   1.5s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.747086 -   1.2s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.815595 -   1.2s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.907978 -   1.3s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.840062 -   1.0s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.850314 -   1.2s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.886106 -   1.1s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.935724 -   1.2s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.710551 -   1.2s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.849255 -   1.2s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.942868 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.824789 -   1.1s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.871637 -   1.3s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.759434 -   1.3s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.925790 -   1.3s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.788040 -   0.9s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.889632 -   1.1s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.787450 -   1.4s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.859890 -   1.2s
[CV] c1=0.980295981763049, c2=0.05443704694924441 ....................
[CV]  c1=0.980295981763049, c2=0.05443704694924441, score=0.890571 -   1.4s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.792736 -   1.3s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.871637 -   1.2s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.924842 -   1.2s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.883247 -   1.2s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.935724 -   1.1s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.896731 -   1.2s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.855584 -   1.1s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.889632 -   1.1s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.597112 -   1.2s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.722395 -   1.3s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.850314 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.787478 -   1.2s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.796785 -   1.4s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.849856 -   1.3s
[CV] c1=0.04334001561729175, c2=0.01544094918082214 ..................
[CV]  c1=0.04334001561729175, c2=0.01544094918082214, score=0.889632 -   1.1s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.909926 -   1.2s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.885987 -   1.3s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.892074 -   1.1s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.913784 -   1.3s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.843771 -   0.8s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.897917 -   1.4s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.851656 -   1.2s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.880787 -   1.2s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.859890 -   1.2s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.920937 -   1.0s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.894372 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.937388 -   1.3s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.880963 -   1.2s
[CV] c1=1.6913979667275219, c2=0.007687802304325694 ..................
[CV]  c1=1.6913979667275219, c2=0.007687802304325694, score=0.873188 -   1.3s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.787924 -   1.2s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.890899 -   1.3s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.835567 -   1.4s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.821023 -   1.3s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.850062 -   1.1s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.857192 -   1.0s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.836305 -   1.2s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.893442 -   1.2s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.850314 -   1.4s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.942868 -   1.2s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.812584 -   0.9s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.939034 -   1.3s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.866353 -   1.1s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.907893 -   1.2s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.934983 -   1.2s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.692146 -   1.2s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.820456 -   1.1s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.805308 -   1.2s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.702102 -   1.2s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.722395 -   1.2s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.787478 -   1.1s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.902225 -   1.3s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.935490 -   1.3s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.939034 -   1.3s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.836305 -   1.2s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.878964 -   1.0s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.836305 -   1.2s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.890571 -   1.4s
[CV] c1=0.26371633815592305, c2=0.12274372539673989 ..................
[CV]  c1=0.26371633815592305, c2=0.12274372539673989, score=0.800397 -   1.4s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.874448 -   1.3s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.939034 -   1.0s
[CV] c1=0.18322334926653372, c2=0.09644068384338038 ..................
[CV]  c1=0.18322334926653372, c2=0.09644068384338038, score=0.888787 -   1.3s
[CV] c1=0.681921483787212, c2=0.014793326214282879 ...................
[CV]  c1=0.681921483787212, c2=0.014793326214282879, score=0.801130 -   1.2s
[CV] c1=0.05869898623722187, c2=0.014018897903934567 .................
[CV]  c1=0.05869898623722187, c2=0.014018897903934567, score=0.849255 -   1.4s
[CV] c1=0.13615813382618788, c2=0.03017671352232767 ..................
[CV]  c1=0.13615813382618788, c2=0.03017671352232767, score=0.796785 -   1.4s
[CV] c1=0.5377631801313764, c2=0.022195953517007455 ..................
[CV]  c1=0.5377631801313764, c2=0.022195953517007455, score=0.925933 -   1.0s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.692146 -   1.3s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.851597 -   1.3s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.864680 -   1.2s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.854874 -   1.2s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.691907 -   0.9s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.805444 -   1.3s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.820044 -   1.3s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.935724 -   1.2s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.812584 -   1.1s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.791992 -   0.9s
[CV] c1=0.2580524477536395, c2=0.02506159942597911 ...................
[CV]  c1=0.2580524477536395, c2=0.02506159942597911, score=0.716783 -   1.4s
[CV] c1=0.07920069893418874, c2=0.005807967291107957 .................
[CV]  c1=0.07920069893418874, c2=0.005807967291107957, score=0.931890 -   1.2s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.839355 -   1.3s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.778057 -   1.4s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.924842 -   1.0s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.787400 -   1.2s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.787478 -   1.4s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.909759 -   1.2s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.920937 -   1.1s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.772405 -   1.1s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.847786 -   1.2s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.876912 -   1.2s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.722395 -   1.2s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.692146 -   1.5s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.945082 -   0.9s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.782242 -   1.3s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.732358 -   1.4s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.954937 -   1.3s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.914038 -   1.3s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.849422 -   0.9s
[CV] c1=0.509570987234981, c2=0.08375458922951341 ....................
[CV]  c1=0.509570987234981, c2=0.08375458922951341, score=0.848606 -   1.2s
[CV] c1=0.35460125079999844, c2=0.0008836952433573171 ................
[CV]  c1=0.35460125079999844, c2=0.0008836952433573171, score=0.896731 -   1.1s
[CV] c1=0.07408630575173106, c2=0.04892357851637686 ..................
[CV]  c1=0.07408630575173106, c2=0.04892357851637686, score=0.796785 -   1.3s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.787478 -   1.3s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.840127 -   1.0s
[CV] c1=1.4038809296134227, c2=0.0037087674059544267 .................
[CV]  c1=1.4038809296134227, c2=0.0037087674059544267, score=0.743110 -   0.9s
[CV] c1=0.06239897390692768, c2=0.02465699508168911 ..................
[CV]  c1=0.06239897390692768, c2=0.02465699508168911, score=0.954937 -   1.2s
[CV] c1=0.10610949495896399, c2=0.11844615478204674 ..................
[CV]  c1=0.10610949495896399, c2=0.11844615478204674, score=0.872936 -   1.2s
[CV] c1=0.11742461718830033, c2=0.02662617554316118 ..................
[CV]  c1=0.11742461718830033, c2=0.02662617554316118, score=0.897917 -   1.2s
[CV] c1=0.5281367792880114, c2=0.026544925748377076 ..................
[CV]  c1=0.5281367792880114, c2=0.026544925748377076, score=0.939034 -   1.2s
[CV] c1=0.3352785320030445, c2=0.17996994960024804 ...................
[CV]  c1=0.3352785320030445, c2=0.17996994960024804, score=0.816898 -   1.0s
Training done in: 8.255246s
     Saving training model...
        Saving training model done in: 0.013229s
*********************************
Prediction done in: 0.030456s