Run2_v10.txt
29.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True False
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
Sentences training data: 286
Sentences test data: 123
Reading corpus done in: 0.003744s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
0 1
0 lemma 2
1 postag CD
2 -1:lemma fructose
3 -1:postag NN
4 hUpper False
5 hLower False
6 hGreek False
7 symb False
8 word[:1] 2
--------------------------- FeaturesTest -----------------------------
0 1
0 lemma delta-arca
1 postag NN
2 -1:lemma _
3 -1:postag NN
4 +1:lemma _
5 +1:postag CD
6 hUpper True
7 hLower True
8 hGreek False
9 symb True
10 word[:1] d
11 word[:2] de
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.900467 - 1.2s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.825530 - 1.4s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.825765 - 1.4s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.857808 - 1.4s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.949229 - 1.1s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.750717 - 1.1s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.822589 - 1.3s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.926111 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.867326 - 1.4s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.861150 - 1.1s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.636809 - 1.4s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.762779 - 1.4s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.949229 - 1.2s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.753849 - 1.5s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.874120 - 1.2s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.905789 - 1.2s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.825397 - 1.3s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.828577 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.922774 - 1.3s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.849711 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.830336 - 1.2s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.941563 - 1.4s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.924615 - 1.2s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.865015 - 1.3s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.879247 - 1.4s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.859994 - 1.2s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.830357 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.913871 - 1.2s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.910267 - 1.2s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.762779 - 1.3s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.816562 - 1.2s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.862778 - 1.4s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.865015 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.922662 - 1.4s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.860487 - 1.0s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.857689 - 1.4s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.849711 - 1.3s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.849711 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.849711 - 1.4s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.844928 - 1.1s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.802949 - 1.5s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.924615 - 1.3s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.927954 - 1.6s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.897132 - 1.3s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.821654 - 1.3s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.874372 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.872541 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.816050 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.821631 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.913871 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.842269 - 1.3s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.913871 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.686689 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.788563 - 1.4s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.862696 - 1.3s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.758223 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.835700 - 1.3s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.940326 - 1.3s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.834928 - 1.2s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.844309 - 1.3s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.854924 - 1.3s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.922774 - 1.3s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.762779 - 1.3s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.828577 - 1.5s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.819260 - 1.5s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.929894 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.828612 - 1.2s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.853416 - 1.2s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.570164 - 1.4s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.903957 - 1.5s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.926537 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.804307 - 1.4s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.804477 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.718760 - 1.4s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.899245 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.907764 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.926111 - 1.3s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.827742 - 1.2s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.922012 - 1.2s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.830740 - 1.3s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.903957 - 1.3s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.914569 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.857375 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.839313 - 1.3s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.830456 - 1.3s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.873652 - 1.2s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.762779 - 1.4s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.834028 - 1.4s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.857375 - 1.1s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.851479 - 1.4s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.762779 - 1.4s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.762779 - 1.3s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.821654 - 1.2s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.922774 - 1.2s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.946103 - 1.4s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.849711 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.932119 - 1.3s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.872053 - 1.3s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.753849 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.800647 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.834028 - 1.5s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.832207 - 1.4s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.762779 - 1.5s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.816050 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.865461 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.900467 - 1.3s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.816050 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.943718 - 1.2s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.759806 - 1.4s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.886120 - 1.3s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.910620 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.875984 - 1.3s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.886407 - 1.4s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.908916 - 1.2s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.826784 - 1.2s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.922774 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.913871 - 1.2s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.822667 - 1.6s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.834277 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.816050 - 1.4s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.803340 - 1.4s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.850851 - 1.4s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.941175 - 1.3s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.810557 - 1.3s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.951395 - 1.5s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.833445 - 1.3s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.833445 - 1.2s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.866766 - 1.3s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.753849 - 1.1s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.861806 - 1.4s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.913871 - 1.2s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.846639 - 1.3s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.928927 - 1.4s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.844928 - 1.2s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.940326 - 1.4s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.840833 - 1.4s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.841121 - 1.3s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.898692 - 1.4s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.877386 - 1.0s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.935487 - 1.3s
[CV] c1=0.003814225451432829, c2=0.089206470981278 ...................
[CV] c1=0.003814225451432829, c2=0.089206470981278, score=0.904056 - 1.3s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.820852 - 1.4s
[CV] c1=0.25950466232991165, c2=0.01977365441523948 ..................
[CV] c1=0.25950466232991165, c2=0.01977365441523948, score=0.830456 - 1.5s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.797781 - 1.2s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.762779 - 1.3s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.791504 - 1.5s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.913871 - 1.3s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.762779 - 1.4s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.922774 - 1.1s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.910267 - 1.2s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.807845 - 1.4s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.932761 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.718807 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.714764 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.753849 - 1.4s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.949229 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.858847 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.859909 - 1.4s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.749813 - 1.2s
[CV] c1=0.43856886108935933, c2=0.07988403179866013 ..................
[CV] c1=0.43856886108935933, c2=0.07988403179866013, score=0.932665 - 1.5s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.818033 - 1.2s
[CV] c1=0.3323283838305798, c2=0.007002119097026294 ..................
[CV] c1=0.3323283838305798, c2=0.007002119097026294, score=0.926111 - 1.4s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.854288 - 1.4s
[CV] c1=0.3888158389962884, c2=0.1590586327437522 ....................
[CV] c1=0.3888158389962884, c2=0.1590586327437522, score=0.935442 - 1.0s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.919826 - 1.3s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.846427 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.844928 - 1.2s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.924057 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.920347 - 1.3s
[CV] c1=0.21310787431780126, c2=0.011293437507544645 .................
[CV] c1=0.21310787431780126, c2=0.011293437507544645, score=0.949229 - 1.1s
[CV] c1=0.24595106020216595, c2=0.003274392069456766 .................
[CV] c1=0.24595106020216595, c2=0.003274392069456766, score=0.762779 - 1.4s
[CV] c1=0.4120790146768621, c2=0.06811336809743664 ...................
[CV] c1=0.4120790146768621, c2=0.06811336809743664, score=0.762779 - 1.3s
[CV] c1=0.6345283186223429, c2=0.12168650777470569 ...................
[CV] c1=0.6345283186223429, c2=0.12168650777470569, score=0.803708 - 1.3s
[CV] c1=1.7398839313283918, c2=0.014437753456864834 ..................
[CV] c1=1.7398839313283918, c2=0.014437753456864834, score=0.821592 - 1.3s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.865015 - 1.4s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.903005 - 1.4s
[CV] c1=0.3848418204399571, c2=0.0490844099596465 ....................
[CV] c1=0.3848418204399571, c2=0.0490844099596465, score=0.816050 - 1.4s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.928927 - 1.2s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.922662 - 1.1s
[CV] c1=0.19934495558505577, c2=0.010637632177256148 .................
[CV] c1=0.19934495558505577, c2=0.010637632177256148, score=0.845585 - 1.5s
[CV] c1=0.0669479769366607, c2=0.03552427653715395 ...................
[CV] c1=0.0669479769366607, c2=0.03552427653715395, score=0.966179 - 1.4s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.822589 - 1.1s
[CV] c1=0.2744903549388577, c2=0.005826833407596435 ..................
[CV] c1=0.2744903549388577, c2=0.005826833407596435, score=0.901386 - 1.3s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.862806 - 1.1s
[CV] c1=0.032724042233347544, c2=0.018322020146790692 ................
[CV] c1=0.032724042233347544, c2=0.018322020146790692, score=0.841740 - 1.0s
[CV] c1=1.0969898445289075, c2=0.053534474792157685 ..................
[CV] c1=1.0969898445289075, c2=0.053534474792157685, score=0.710089 - 1.4s
[CV] c1=0.4982058629999599, c2=0.006198006617897045 ..................
[CV] c1=0.4982058629999599, c2=0.006198006617897045, score=0.926953 - 1.4s
[CV] c1=0.12196360597096503, c2=0.023886738697024967 .................
[CV] c1=0.12196360597096503, c2=0.023886738697024967, score=0.949716 - 1.4s
[CV] c1=0.10308889515554251, c2=0.05215780911438919 ..................
[CV] c1=0.10308889515554251, c2=0.05215780911438919, score=0.822589 - 1.2s
[CV] c1=0.3200158533908076, c2=0.12353349840454286 ...................
[CV] c1=0.3200158533908076, c2=0.12353349840454286, score=0.820852 - 1.0s
Training done in: 8.867335s
Saving training model...
Saving training model done in: 0.013562s
*********************************
Prediction done in: 0.033568s