Run1_v10.txt 29 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: False False
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003860s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
           0         1
0      lemma         2
1     postag        CD
2   -1:lemma  fructose
3  -1:postag        NN
--------------------------- FeaturesTest -----------------------------
           0           1
0      lemma  delta-arca
1     postag          NN
2   -1:lemma           _
3  -1:postag          NN
4   +1:lemma           _
5  +1:postag          CD
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.865443 -   0.8s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.679190 -   1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.894596 -   0.9s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.827517 -   1.0s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.883195 -   1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.836344 -   0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.873860 -   1.0s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.849711 -   1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.769308 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.687408 -   1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.820852 -   1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.914320 -   1.0s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.683676 -   1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.794216 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.595497 -   1.1s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.876340 -   1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.809458 -   1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.708368 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.765873 -   1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.894596 -   0.8s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.905059 -   1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.836344 -   1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.764496 -   1.2s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.884863 -   1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.683676 -   1.1s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.874120 -   1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.879946 -   1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.869930 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.815705 -   1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.790884 -   1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.914857 -   1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.895137 -   1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.887885 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.840073 -   1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.879946 -   1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.848881 -   1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.856620 -   1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.868591 -   1.0s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.861725 -   1.2s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.703882 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.856469 -   0.9s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.820852 -   1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.920058 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.914811 -   1.0s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.827517 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.859998 -   1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.879947 -   1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.812884 -   1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.735694 -   1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.849711 -   1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.701318 -   1.1s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.849711 -   1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.857679 -   1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.889676 -   1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.703530 -   1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.889676 -   1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.914669 -   1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.879947 -   1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.841215 -   1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.910520 -   1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.797169 -   1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.859998 -   1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.703530 -   1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.794216 -   1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.932708 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.879947 -   1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.921133 -   1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.932708 -   1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.879947 -   1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.876457 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.679174 -   1.1s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.898568 -   1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.790088 -   1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.683676 -   1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.859998 -   0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.930828 -   1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.679174 -   1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.914857 -   1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.857679 -   1.0s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.851982 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.906861 -   1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.905220 -   1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.909664 -   1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.881146 -   1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.921133 -   1.3s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.824046 -   1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.884863 -   1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.774719 -   0.9s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.903946 -   1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.880490 -   1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.875090 -   1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.935212 -   1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.696126 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.797169 -   0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.698909 -   1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.909664 -   1.0s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.824046 -   1.0s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.794216 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.884863 -   0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.671625 -   1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.920093 -   1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.884863 -   1.0s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.677141 -   0.9s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.765873 -   0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.673456 -   1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.879947 -   1.0s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.809814 -   1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.884863 -   1.0s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.587002 -   1.0s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.533949 -   1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.919477 -   1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.771970 -   1.0s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.865939 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.824046 -   0.8s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.921051 -   1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.799504 -   1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.696126 -   1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.926291 -   1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV]  c1=0.12232540864976137, c2=0.05565442682947846, score=0.946265 -   1.1s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.794216 -   1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.772475 -   1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.686315 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.564252 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.791386 -   0.8s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.794216 -   1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.781269 -   1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV]  c1=0.040228507114711654, c2=0.07249239303768308, score=0.876457 -   1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.611958 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.865939 -   0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.853407 -   1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.623578 -   1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.774719 -   1.0s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV]  c1=0.024804754224065653, c2=0.026332251363984482, score=0.849711 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.683974 -   1.1s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.812884 -   1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.849102 -   1.2s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.919477 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.686315 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.696126 -   0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.733537 -   1.4s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.935212 -   1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.910316 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.759895 -   1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.884863 -   0.8s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.825927 -   1.3s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.874120 -   1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.852946 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.863165 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.794216 -   0.8s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.920954 -   1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.913940 -   1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.772475 -   1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.807845 -   1.0s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.809814 -   0.9s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV]  c1=0.26477192990624615, c2=0.05577785462906174, score=0.809458 -   1.2s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.897065 -   1.4s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.799504 -   1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.824046 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.772475 -   0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.917297 -   1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV]  c1=0.0024717739018770973, c2=0.1040320995921139, score=0.829588 -   1.2s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.865939 -   1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.809814 -   1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV]  c1=0.7762766866633338, c2=0.06044187771534946, score=0.910316 -   0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.675699 -   1.2s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.679190 -   1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.587002 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.746345 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.865939 -   0.8s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.876058 -   0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV]  c1=0.06809850332119287, c2=0.01656792754467579, score=0.804534 -   1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV]  c1=0.2635919732062477, c2=0.05276315772327436, score=0.794216 -   1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV]  c1=0.46927069932753585, c2=0.02038989539209574, score=0.894596 -   1.0s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV]  c1=0.8293777602265241, c2=0.030882995150252723, score=0.774719 -   1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.804678 -   0.8s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV]  c1=0.00041876301422586143, c2=0.03251553476135004, score=0.883209 -   1.2s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.865939 -   1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV]  c1=0.6870593229988403, c2=0.05265737914059501, score=0.623578 -   1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV]  c1=0.6940531517638533, c2=0.05125577006946058, score=0.919477 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.672898 -   0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV]  c1=0.37691263592010804, c2=0.010709701276127422, score=0.854844 -   1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV]  c1=0.665990903123903, c2=0.0644784925454884, score=0.884863 -   1.3s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.790873 -   1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.846283 -   1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.839367 -   0.8s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV]  c1=1.5046786522259286, c2=0.10025629970071295, score=0.785357 -   1.0s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV]  c1=0.09740360970030945, c2=0.028519696998299794, score=0.794216 -   1.2s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV]  c1=0.7400583455049986, c2=0.11089308616237473, score=0.834999 -   1.2s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV]  c1=1.3554102602892857, c2=0.04064106043794771, score=0.703937 -   1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV]  c1=0.6885635276120627, c2=0.024418511748123376, score=0.852253 -   0.8s
Training done in: 7.112705s
     Saving training model...
        Saving training model done in: 0.013436s
*********************************
Prediction done in: 0.025684s