Run1_v10.txt
29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: False False
Report file: _v10
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
Sentences training data: 286
Sentences test data: 123
Reading corpus done in: 0.003860s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
0 1
0 lemma 2
1 postag CD
2 -1:lemma fructose
3 -1:postag NN
--------------------------- FeaturesTest -----------------------------
0 1
0 lemma delta-arca
1 postag NN
2 -1:lemma _
3 -1:postag NN
4 +1:lemma _
5 +1:postag CD
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.865443 - 0.8s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.679190 - 1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.894596 - 0.9s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.827517 - 1.0s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.883195 - 1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.836344 - 0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.873860 - 1.0s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.849711 - 1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.769308 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.687408 - 1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.820852 - 1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.914320 - 1.0s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.683676 - 1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.794216 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.595497 - 1.1s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.876340 - 1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.809458 - 1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.708368 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.765873 - 1.1s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.894596 - 0.8s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.905059 - 1.2s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.836344 - 1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.764496 - 1.2s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.884863 - 1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.683676 - 1.1s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.874120 - 1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.879946 - 1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.869930 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.815705 - 1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.790884 - 1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.914857 - 1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.895137 - 1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.887885 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.840073 - 1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.879946 - 1.0s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.848881 - 1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.856620 - 1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.868591 - 1.0s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.861725 - 1.2s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.703882 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.856469 - 0.9s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.820852 - 1.1s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.920058 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.914811 - 1.0s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.827517 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.859998 - 1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.879947 - 1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.812884 - 1.1s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.735694 - 1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.849711 - 1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.701318 - 1.1s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.849711 - 1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.857679 - 1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.889676 - 1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.703530 - 1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.889676 - 1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.914669 - 1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.879947 - 1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.841215 - 1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.910520 - 1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.797169 - 1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.859998 - 1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.703530 - 1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.794216 - 1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.932708 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.879947 - 1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.921133 - 1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.932708 - 1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.879947 - 1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.876457 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.679174 - 1.1s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.898568 - 1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.790088 - 1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.683676 - 1.1s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.859998 - 0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.930828 - 1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.679174 - 1.2s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.914857 - 1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.857679 - 1.0s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.851982 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.906861 - 1.0s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.905220 - 1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.909664 - 1.1s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.881146 - 1.0s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.921133 - 1.3s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.824046 - 1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.884863 - 1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.774719 - 0.9s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.903946 - 1.0s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.880490 - 1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.875090 - 1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.935212 - 1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.696126 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.797169 - 0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.698909 - 1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.909664 - 1.0s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.824046 - 1.0s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.794216 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.884863 - 0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.671625 - 1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.920093 - 1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.884863 - 1.0s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.677141 - 0.9s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.765873 - 0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.673456 - 1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.879947 - 1.0s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.809814 - 1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.884863 - 1.0s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.587002 - 1.0s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.533949 - 1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.919477 - 1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.771970 - 1.0s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.865939 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.824046 - 0.8s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.921051 - 1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.799504 - 1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.696126 - 1.1s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.926291 - 1.0s
[CV] c1=0.12232540864976137, c2=0.05565442682947846 ..................
[CV] c1=0.12232540864976137, c2=0.05565442682947846, score=0.946265 - 1.1s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.794216 - 1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.772475 - 1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.686315 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.564252 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.791386 - 0.8s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.794216 - 1.1s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.781269 - 1.2s
[CV] c1=0.040228507114711654, c2=0.07249239303768308 .................
[CV] c1=0.040228507114711654, c2=0.07249239303768308, score=0.876457 - 1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.611958 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.865939 - 0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.853407 - 1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.623578 - 1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.774719 - 1.0s
[CV] c1=0.024804754224065653, c2=0.026332251363984482 ................
[CV] c1=0.024804754224065653, c2=0.026332251363984482, score=0.849711 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.683974 - 1.1s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.812884 - 1.0s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.849102 - 1.2s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.919477 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.686315 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.696126 - 0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.733537 - 1.4s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.935212 - 1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.910316 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.759895 - 1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.884863 - 0.8s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.825927 - 1.3s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.874120 - 1.0s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.852946 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.863165 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.794216 - 0.8s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.920954 - 1.1s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.913940 - 1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.772475 - 1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.807845 - 1.0s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.809814 - 0.9s
[CV] c1=0.26477192990624615, c2=0.05577785462906174 ..................
[CV] c1=0.26477192990624615, c2=0.05577785462906174, score=0.809458 - 1.2s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.897065 - 1.4s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.799504 - 1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.824046 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.772475 - 0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.917297 - 1.0s
[CV] c1=0.0024717739018770973, c2=0.1040320995921139 .................
[CV] c1=0.0024717739018770973, c2=0.1040320995921139, score=0.829588 - 1.2s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.865939 - 1.1s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.809814 - 1.1s
[CV] c1=0.7762766866633338, c2=0.06044187771534946 ...................
[CV] c1=0.7762766866633338, c2=0.06044187771534946, score=0.910316 - 0.9s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.675699 - 1.2s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.679190 - 1.1s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.587002 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.746345 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.865939 - 0.8s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.876058 - 0.9s
[CV] c1=0.06809850332119287, c2=0.01656792754467579 ..................
[CV] c1=0.06809850332119287, c2=0.01656792754467579, score=0.804534 - 1.1s
[CV] c1=0.2635919732062477, c2=0.05276315772327436 ...................
[CV] c1=0.2635919732062477, c2=0.05276315772327436, score=0.794216 - 1.0s
[CV] c1=0.46927069932753585, c2=0.02038989539209574 ..................
[CV] c1=0.46927069932753585, c2=0.02038989539209574, score=0.894596 - 1.0s
[CV] c1=0.8293777602265241, c2=0.030882995150252723 ..................
[CV] c1=0.8293777602265241, c2=0.030882995150252723, score=0.774719 - 1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.804678 - 0.8s
[CV] c1=0.00041876301422586143, c2=0.03251553476135004 ...............
[CV] c1=0.00041876301422586143, c2=0.03251553476135004, score=0.883209 - 1.2s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.865939 - 1.1s
[CV] c1=0.6870593229988403, c2=0.05265737914059501 ...................
[CV] c1=0.6870593229988403, c2=0.05265737914059501, score=0.623578 - 1.2s
[CV] c1=0.6940531517638533, c2=0.05125577006946058 ...................
[CV] c1=0.6940531517638533, c2=0.05125577006946058, score=0.919477 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.672898 - 0.9s
[CV] c1=0.37691263592010804, c2=0.010709701276127422 .................
[CV] c1=0.37691263592010804, c2=0.010709701276127422, score=0.854844 - 1.1s
[CV] c1=0.665990903123903, c2=0.0644784925454884 .....................
[CV] c1=0.665990903123903, c2=0.0644784925454884, score=0.884863 - 1.3s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.790873 - 1.1s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.846283 - 1.1s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.839367 - 0.8s
[CV] c1=1.5046786522259286, c2=0.10025629970071295 ...................
[CV] c1=1.5046786522259286, c2=0.10025629970071295, score=0.785357 - 1.0s
[CV] c1=0.09740360970030945, c2=0.028519696998299794 .................
[CV] c1=0.09740360970030945, c2=0.028519696998299794, score=0.794216 - 1.2s
[CV] c1=0.7400583455049986, c2=0.11089308616237473 ...................
[CV] c1=0.7400583455049986, c2=0.11089308616237473, score=0.834999 - 1.2s
[CV] c1=1.3554102602892857, c2=0.04064106043794771 ...................
[CV] c1=1.3554102602892857, c2=0.04064106043794771, score=0.703937 - 1.0s
[CV] c1=0.6885635276120627, c2=0.024418511748123376 ..................
[CV] c1=0.6885635276120627, c2=0.024418511748123376, score=0.852253 - 0.8s
Training done in: 7.112705s
Saving training model...
Saving training model done in: 0.013436s
*********************************
Prediction done in: 0.025684s