Run_8.txt
30.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v13
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
Sentences training data: 286
Sentences test data: 123
Reading corpus done in: 0.003530s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
0 1
0 lemma 2
1 postag CD
2 -1:lemma fructose
3 -1:postag NN
4 hUpper False
5 hLower False
6 hGreek False
7 symb False
8 lemma[:1] 2
9 word 2
10 isUpper False
11 isLower False
12 isGreek False
13 isNumber True
14 -1:word fructose
15 -2:lemma Cra
16 -2:postag NNP
--------------------------- FeaturesTest -----------------------------
0 1
0 lemma delta-arca
1 postag NN
2 -1:lemma _
3 -1:postag NN
4 +1:lemma _
5 +1:postag CD
6 hUpper True
7 hLower True
8 hGreek False
9 symb True
10 lemma[:1] d
11 lemma[:2] de
12 word delta-arcA
13 isUpper False
14 isLower False
15 isGreek False
16 isNumber False
17 -1:word _
18 +1:word _
19 -2:lemma affyexp
20 -2:postag JJ
21 +2:lemma glucose
22 +2:postag NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.855584 - 1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.839443 - 1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.744355 - 1.9s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.837423 - 1.7s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.786374 - 1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.894214 - 1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.927296 - 1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.769561 - 1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.820276 - 1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.852241 - 1.8s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.701018 - 1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.823313 - 1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.810806 - 1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.862528 - 1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.917821 - 1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.927296 - 1.4s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.871337 - 1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.928279 - 1.8s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.905285 - 1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.877672 - 1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.947560 - 1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.827435 - 1.7s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.934961 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.871999 - 1.7s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.877726 - 1.6s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.832180 - 1.6s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.905285 - 1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.908266 - 1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.712673 - 1.9s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.818750 - 1.8s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.844088 - 1.3s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.876526 - 1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.786169 - 1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.917821 - 1.6s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.677786 - 1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.854858 - 1.5s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.827337 - 1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.854189 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.797575 - 1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.936486 - 1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.882807 - 1.2s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.827690 - 2.0s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.601194 - 1.8s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.813790 - 2.0s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.932900 - 1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.867297 - 1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.945654 - 2.0s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.848253 - 1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.927509 - 1.9s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.609476 - 1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.945871 - 1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.940537 - 1.7s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.767841 - 1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.824101 - 1.9s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.777170 - 1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV] c1=0.014622839747769914, c2=0.061827531030816944, score=0.927296 - 1.3s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV] c1=0.2546256913180655, c2=0.08567888835212083, score=0.701018 - 1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV] c1=1.320423767018736, c2=0.0006342386585221799, score=0.818750 - 1.9s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV] c1=0.3895794958853977, c2=0.008826457669620126, score=0.950725 - 2.0s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV] c1=0.6190712080838937, c2=0.07176205729861096, score=0.824101 - 1.9s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.844088 - 1.6s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.874253 - 1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.927296 - 1.6s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.686282 - 1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.818750 - 1.8s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.849406 - 1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.701018 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.812996 - 1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.841763 - 1.5s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.772963 - 1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.950946 - 1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.927296 - 1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.729474 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.917821 - 1.6s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.744355 - 1.8s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.898170 - 1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.947560 - 1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.898170 - 1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.946646 - 1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.932900 - 1.7s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.876526 - 1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.927296 - 1.6s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.777170 - 1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.816898 - 1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.931245 - 1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.950876 - 1.6s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.879222 - 1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.964555 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.892910 - 1.7s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.908266 - 1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.849406 - 1.5s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.714964 - 1.9s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.813790 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.868123 - 1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.794077 - 1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.839383 - 1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.859593 - 1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.925645 - 1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.850628 - 1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.839785 - 1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.701018 - 1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.824097 - 1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.888272 - 1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.818750 - 1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV] c1=1.1730395683067192, c2=0.04136085455259575, score=0.832561 - 1.7s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.898170 - 1.7s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.912922 - 1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.774381 - 1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.889771 - 1.6s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.872077 - 1.5s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.876526 - 1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.854858 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.745317 - 1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.687982 - 1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.694284 - 1.6s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.898170 - 1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.867297 - 1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.859655 - 1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.818750 - 1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.917821 - 1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.927296 - 1.6s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.865754 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.601194 - 1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.917821 - 1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.818750 - 1.5s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV] c1=0.16796773996321945, c2=0.051466183184993, score=0.823313 - 1.9s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV] c1=0.00632707477587882, c2=0.032688081217957285, score=0.939823 - 1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV] c1=0.12475431096451621, c2=0.013861677898849787, score=0.864462 - 1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV] c1=0.6186211042682789, c2=0.021841056417535254, score=0.923585 - 1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.803283 - 1.7s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.842165 - 1.6s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.947560 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.767841 - 1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.824101 - 1.6s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.950725 - 1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.926731 - 1.7s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.839785 - 1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.744355 - 1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.923585 - 1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.827435 - 1.4s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.701018 - 1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.832180 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.810806 - 1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.869758 - 1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.905285 - 1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.940537 - 1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.945871 - 1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.930867 - 1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.848003 - 1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV] c1=0.35540949764912066, c2=0.05344196426839372, score=0.931225 - 1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.813790 - 1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.950725 - 1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.932900 - 1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.920469 - 1.6s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.818750 - 1.3s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.950946 - 1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.854858 - 1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.812988 - 1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV] c1=0.5174874167807753, c2=0.020703126745445985, score=0.946646 - 1.9s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.850628 - 1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.929483 - 1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.927302 - 1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.825027 - 1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.950725 - 1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.912264 - 1.2s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.883482 - 1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.872077 - 1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.862659 - 1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.917821 - 1.6s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.841763 - 1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.839383 - 1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV] c1=0.022485418318991247, c2=0.07226838517970073, score=0.886214 - 1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV] c1=1.4962368934644148, c2=0.005609305438174272, score=0.907688 - 1.9s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.902802 - 1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.677786 - 1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV] c1=0.190929240598343, c2=0.04355186228965651, score=0.813790 - 1.9s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.865505 - 1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.609476 - 1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.813790 - 1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.946646 - 1.4s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.847957 - 1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.824101 - 1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.931245 - 1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.927509 - 1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.824101 - 1.3s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.844455 - 1.9s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.818750 - 1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.818750 - 1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.862528 - 1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.882795 - 1.4s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV] c1=0.1736092848065649, c2=0.02070619498632359, score=0.711517 - 1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV] c1=0.3890080123705456, c2=0.06863542905418545, score=0.694284 - 1.9s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV] c1=0.9907276867534006, c2=0.015068999673777204, score=0.908266 - 1.6s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV] c1=0.37993592904226775, c2=0.001287546330642171, score=0.696477 - 1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV] c1=0.5132989845379167, c2=0.04018212909012408, score=0.917821 - 1.5s
Training done in: 11.427793s
Saving training model...
Saving training model done in: 0.013545s
*********************************
Prediction done in: 0.047166s