Run_1.txt 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: False False
Report file: _v13
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003697s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
           0         1
0      lemma         2
1     postag        CD
2   -1:lemma  fructose
3  -1:postag        NN
--------------------------- FeaturesTest -----------------------------
           0           1
0      lemma  delta-arca
1     postag          NN
2   -1:lemma           _
3  -1:postag          NN
4   +1:lemma           _
5  +1:postag          CD
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.754459 -   0.9s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.884863 -   1.0s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.921051 -   1.0s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.708368 -   1.1s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.823525 -   1.0s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.686315 -   0.9s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.797169 -   1.0s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.891872 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.827517 -   1.0s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.790114 -   1.1s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.846283 -   1.0s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.794216 -   1.0s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.794216 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.921051 -   1.0s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.898568 -   1.0s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.894596 -   0.9s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.862491 -   1.1s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.902103 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.816050 -   1.1s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.920164 -   1.0s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.827517 -   0.9s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.865939 -   1.1s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.920093 -   1.0s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.913639 -   1.1s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.807845 -   1.1s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.692888 -   0.8s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.710242 -   1.2s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.879947 -   1.0s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.792622 -   1.2s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.683676 -   1.1s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.708368 -   1.0s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.839343 -   0.9s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.683676 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.794216 -   1.1s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.794216 -   1.1s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.854405 -   0.9s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.634294 -   1.1s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.853754 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.857529 -   1.1s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.872319 -   1.1s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.868591 -   1.0s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.856415 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.921051 -   1.0s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.673456 -   0.9s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.879946 -   1.0s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.902301 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.707416 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.844183 -   1.0s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.868591 -   1.0s
[CV] c1=0.25820273038993297, c2=0.1449995527843055 ...................
[CV]  c1=0.25820273038993297, c2=0.1449995527843055, score=0.848009 -   1.1s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.792622 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.619013 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.708368 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.829117 -   1.0s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.827517 -   0.9s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.773639 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.885444 -   0.9s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.820852 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.785357 -   1.0s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.911899 -   1.0s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.794216 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.835390 -   0.9s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.924830 -   1.1s
[CV] c1=0.36321959660359887, c2=0.030083524897554965 .................
[CV]  c1=0.36321959660359887, c2=0.030083524897554965, score=0.925063 -   1.0s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.755188 -   1.1s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.881748 -   1.2s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.791386 -   0.9s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.903946 -   1.0s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.692122 -   1.1s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.868591 -   1.0s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.595497 -   1.2s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.927188 -   1.0s
[CV] c1=0.14843910146742284, c2=0.03226312504680252 ..................
[CV]  c1=0.14843910146742284, c2=0.03226312504680252, score=0.846394 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.675699 -   1.1s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.708368 -   1.1s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.794216 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.881136 -   1.1s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.868591 -   1.0s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.791386 -   0.9s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.794216 -   1.0s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.788431 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.884863 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.794216 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.548315 -   1.1s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.857529 -   1.0s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.708368 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.690231 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.920954 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.677135 -   1.0s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.812884 -   1.0s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.921051 -   1.0s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.914982 -   1.0s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.772194 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.712032 -   1.0s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.906157 -   1.0s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.869930 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.862491 -   1.0s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.827517 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.831867 -   1.1s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.755303 -   0.9s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.931111 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.708368 -   1.0s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.912263 -   1.0s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.708368 -   1.1s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.874799 -   0.9s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.794216 -   1.0s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.857895 -   1.0s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.920058 -   1.1s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.804678 -   1.0s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.809814 -   0.9s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.913639 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.839367 -   0.9s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.794216 -   1.1s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.874176 -   1.0s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.852946 -   0.9s
[CV] c1=0.40043615725844317, c2=0.045177502071716565 .................
[CV]  c1=0.40043615725844317, c2=0.045177502071716565, score=0.812884 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.807845 -   1.0s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.708368 -   1.1s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.794216 -   1.1s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.761012 -   0.9s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.851982 -   1.0s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.655956 -   0.9s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.869930 -   1.0s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.884863 -   1.0s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.686315 -   1.0s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.869930 -   1.1s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.794216 -   1.1s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.894739 -   1.1s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.848019 -   1.0s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.587002 -   1.0s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.921051 -   1.0s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.924261 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.839679 -   1.1s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.884863 -   1.0s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.879947 -   0.8s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.920058 -   1.1s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.765776 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.920093 -   1.0s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.797169 -   0.9s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.735694 -   1.0s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.783479 -   1.1s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.846283 -   1.0s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.853491 -   1.0s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.707416 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.679174 -   0.9s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.752310 -   1.1s
[CV] c1=0.5538405782197408, c2=0.07960946817558003 ...................
[CV]  c1=0.5538405782197408, c2=0.07960946817558003, score=0.807845 -   1.1s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.855893 -   1.1s
[CV] c1=1.7051690366028645, c2=0.04119436723956498 ...................
[CV]  c1=1.7051690366028645, c2=0.04119436723956498, score=0.693211 -   1.1s
[CV] c1=0.506331063874698, c2=0.006453306084976453 ...................
[CV]  c1=0.506331063874698, c2=0.006453306084976453, score=0.920058 -   1.1s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.812884 -   1.0s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.759895 -   1.0s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.708368 -   1.1s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.856415 -   1.0s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.859998 -   0.9s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.868591 -   1.0s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.683196 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.921051 -   1.0s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.619013 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.781269 -   0.8s
[CV] c1=1.1447553603576668, c2=0.01990190550729197 ...................
[CV]  c1=1.1447553603576668, c2=0.01990190550729197, score=0.729107 -   1.1s
[CV] c1=0.566877090439985, c2=0.11885476879365008 ....................
[CV]  c1=0.566877090439985, c2=0.11885476879365008, score=0.797169 -   1.0s
[CV] c1=0.2423964251520167, c2=0.029664141745187163 ..................
[CV]  c1=0.2423964251520167, c2=0.029664141745187163, score=0.871681 -   1.3s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.707115 -   1.1s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.765873 -   1.1s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.868591 -   1.0s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.893214 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.857498 -   1.0s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.862342 -   1.1s
[CV] c1=0.8754300341342343, c2=0.07834116642130053 ...................
[CV]  c1=0.8754300341342343, c2=0.07834116642130053, score=0.905836 -   1.0s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.913639 -   1.1s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.709347 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.922832 -   1.1s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.919477 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.927169 -   0.8s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.708368 -   1.1s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.548315 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.794216 -   1.1s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.821611 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.836791 -   0.8s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.827517 -   1.0s
[CV] c1=0.6408852258158738, c2=0.00974947513922504 ...................
[CV]  c1=0.6408852258158738, c2=0.00974947513922504, score=0.804678 -   1.1s
[CV] c1=0.5013481333641194, c2=0.0038888430334755165 .................
[CV]  c1=0.5013481333641194, c2=0.0038888430334755165, score=0.812884 -   1.1s
[CV] c1=0.55474081003644, c2=0.03200599838771336 .....................
[CV]  c1=0.55474081003644, c2=0.03200599838771336, score=0.927188 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.919905 -   0.9s
[CV] c1=0.37003802271170205, c2=0.03235596392564057 ..................
[CV]  c1=0.37003802271170205, c2=0.03235596392564057, score=0.914009 -   1.0s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.883195 -   1.0s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.824977 -   1.0s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.824046 -   1.0s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.889676 -   0.9s
[CV] c1=0.4716413701252996, c2=0.020707741802851287 ..................
[CV]  c1=0.4716413701252996, c2=0.020707741802851287, score=0.812884 -   1.1s
[CV] c1=1.3109075902903429, c2=0.0987913465628396 ....................
[CV]  c1=1.3109075902903429, c2=0.0987913465628396, score=0.746345 -   1.1s
[CV] c1=0.19892136084009834, c2=0.0215890963028946 ...................
[CV]  c1=0.19892136084009834, c2=0.0215890963028946, score=0.906540 -   1.1s
[CV] c1=0.6236675675631103, c2=0.08801024577462967 ...................
[CV]  c1=0.6236675675631103, c2=0.08801024577462967, score=0.772475 -   1.1s
[CV] c1=0.06704945233304155, c2=0.06794151143065376 ..................
[CV]  c1=0.06704945233304155, c2=0.06794151143065376, score=0.876457 -   0.8s
Training done in: 6.765294s
     Saving training model...
        Saving training model done in: 0.016333s
*********************************
Prediction done in: 0.029945s