Run_8.txt 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: True True
Report file: _v13
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 286
   Sentences test data: 123
Reading corpus done in: 0.003530s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0         1
0       lemma         2
1      postag        CD
2    -1:lemma  fructose
3   -1:postag        NN
4      hUpper     False
5      hLower     False
6      hGreek     False
7        symb     False
8   lemma[:1]         2
9        word         2
10    isUpper     False
11    isLower     False
12    isGreek     False
13   isNumber      True
14    -1:word  fructose
15   -2:lemma       Cra
16  -2:postag       NNP
--------------------------- FeaturesTest -----------------------------
            0           1
0       lemma  delta-arca
1      postag          NN
2    -1:lemma           _
3   -1:postag          NN
4    +1:lemma           _
5   +1:postag          CD
6      hUpper        True
7      hLower        True
8      hGreek       False
9        symb        True
10  lemma[:1]           d
11  lemma[:2]          de
12       word  delta-arcA
13    isUpper       False
14    isLower       False
15    isGreek       False
16   isNumber       False
17    -1:word           _
18    +1:word           _
19   -2:lemma     affyexp
20  -2:postag          JJ
21   +2:lemma     glucose
22  +2:postag          NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.855584 -   1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.839443 -   1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.744355 -   1.9s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.837423 -   1.7s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.786374 -   1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.894214 -   1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.927296 -   1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.769561 -   1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.820276 -   1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.852241 -   1.8s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.701018 -   1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.823313 -   1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.810806 -   1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.862528 -   1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.917821 -   1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.927296 -   1.4s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.871337 -   1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.928279 -   1.8s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.905285 -   1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.877672 -   1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.947560 -   1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.827435 -   1.7s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.934961 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.871999 -   1.7s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.877726 -   1.6s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.832180 -   1.6s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.905285 -   1.6s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.908266 -   1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.712673 -   1.9s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.818750 -   1.8s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.844088 -   1.3s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.876526 -   1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.786169 -   1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.917821 -   1.6s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.677786 -   1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.854858 -   1.5s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.827337 -   1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.854189 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.797575 -   1.8s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.936486 -   1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.882807 -   1.2s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.827690 -   2.0s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.601194 -   1.8s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.813790 -   2.0s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.932900 -   1.9s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.867297 -   1.5s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.945654 -   2.0s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.848253 -   1.6s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.927509 -   1.9s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.609476 -   1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.945871 -   1.4s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.940537 -   1.7s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.767841 -   1.7s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.824101 -   1.9s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.777170 -   1.7s
[CV] c1=0.014622839747769914, c2=0.061827531030816944 ................
[CV]  c1=0.014622839747769914, c2=0.061827531030816944, score=0.927296 -   1.3s
[CV] c1=0.2546256913180655, c2=0.08567888835212083 ...................
[CV]  c1=0.2546256913180655, c2=0.08567888835212083, score=0.701018 -   1.8s
[CV] c1=1.320423767018736, c2=0.0006342386585221799 ..................
[CV]  c1=1.320423767018736, c2=0.0006342386585221799, score=0.818750 -   1.9s
[CV] c1=0.3895794958853977, c2=0.008826457669620126 ..................
[CV]  c1=0.3895794958853977, c2=0.008826457669620126, score=0.950725 -   2.0s
[CV] c1=0.6190712080838937, c2=0.07176205729861096 ...................
[CV]  c1=0.6190712080838937, c2=0.07176205729861096, score=0.824101 -   1.9s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.844088 -   1.6s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.874253 -   1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.927296 -   1.6s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.686282 -   1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.818750 -   1.8s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.849406 -   1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.701018 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.812996 -   1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.841763 -   1.5s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.772963 -   1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.950946 -   1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.927296 -   1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.729474 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.917821 -   1.6s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.744355 -   1.8s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.898170 -   1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.947560 -   1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.898170 -   1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.946646 -   1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.932900 -   1.7s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.876526 -   1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.927296 -   1.6s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.777170 -   1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.816898 -   1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.931245 -   1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.950876 -   1.6s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.879222 -   1.6s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.964555 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.892910 -   1.7s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.908266 -   1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.849406 -   1.5s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.714964 -   1.9s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.813790 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.868123 -   1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.794077 -   1.7s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.839383 -   1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.859593 -   1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.925645 -   1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.850628 -   1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.839785 -   1.6s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.701018 -   1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.824097 -   1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.888272 -   1.7s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.818750 -   1.8s
[CV] c1=1.1730395683067192, c2=0.04136085455259575 ...................
[CV]  c1=1.1730395683067192, c2=0.04136085455259575, score=0.832561 -   1.7s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.898170 -   1.7s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.912922 -   1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.774381 -   1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.889771 -   1.6s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.872077 -   1.5s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.876526 -   1.7s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.854858 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.745317 -   1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.687982 -   1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.694284 -   1.6s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.898170 -   1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.867297 -   1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.859655 -   1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.818750 -   1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.917821 -   1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.927296 -   1.6s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.865754 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.601194 -   1.8s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.917821 -   1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.818750 -   1.5s
[CV] c1=0.16796773996321945, c2=0.051466183184993 ....................
[CV]  c1=0.16796773996321945, c2=0.051466183184993, score=0.823313 -   1.9s
[CV] c1=0.00632707477587882, c2=0.032688081217957285 .................
[CV]  c1=0.00632707477587882, c2=0.032688081217957285, score=0.939823 -   1.7s
[CV] c1=0.12475431096451621, c2=0.013861677898849787 .................
[CV]  c1=0.12475431096451621, c2=0.013861677898849787, score=0.864462 -   1.8s
[CV] c1=0.6186211042682789, c2=0.021841056417535254 ..................
[CV]  c1=0.6186211042682789, c2=0.021841056417535254, score=0.923585 -   1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.803283 -   1.7s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.842165 -   1.6s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.947560 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.767841 -   1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.824101 -   1.6s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.950725 -   1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.926731 -   1.7s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.839785 -   1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.744355 -   1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.923585 -   1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.827435 -   1.4s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.701018 -   1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.832180 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.810806 -   1.7s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.869758 -   1.8s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.905285 -   1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.940537 -   1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.945871 -   1.8s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.930867 -   1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.848003 -   1.7s
[CV] c1=0.35540949764912066, c2=0.05344196426839372 ..................
[CV]  c1=0.35540949764912066, c2=0.05344196426839372, score=0.931225 -   1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.813790 -   1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.950725 -   1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.932900 -   1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.920469 -   1.6s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.818750 -   1.3s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.950946 -   1.8s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.854858 -   1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.812988 -   1.6s
[CV] c1=0.5174874167807753, c2=0.020703126745445985 ..................
[CV]  c1=0.5174874167807753, c2=0.020703126745445985, score=0.946646 -   1.9s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.850628 -   1.5s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.929483 -   1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.927302 -   1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.825027 -   1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.950725 -   1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.912264 -   1.2s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.883482 -   1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.872077 -   1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.862659 -   1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.917821 -   1.6s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.841763 -   1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.839383 -   1.7s
[CV] c1=0.022485418318991247, c2=0.07226838517970073 .................
[CV]  c1=0.022485418318991247, c2=0.07226838517970073, score=0.886214 -   1.7s
[CV] c1=1.4962368934644148, c2=0.005609305438174272 ..................
[CV]  c1=1.4962368934644148, c2=0.005609305438174272, score=0.907688 -   1.9s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.902802 -   1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.677786 -   1.5s
[CV] c1=0.190929240598343, c2=0.04355186228965651 ....................
[CV]  c1=0.190929240598343, c2=0.04355186228965651, score=0.813790 -   1.9s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.865505 -   1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.609476 -   1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.813790 -   1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.946646 -   1.4s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.847957 -   1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.824101 -   1.7s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.931245 -   1.7s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.927509 -   1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.824101 -   1.3s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.844455 -   1.9s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.818750 -   1.8s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.818750 -   1.8s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.862528 -   1.7s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.882795 -   1.4s
[CV] c1=0.1736092848065649, c2=0.02070619498632359 ...................
[CV]  c1=0.1736092848065649, c2=0.02070619498632359, score=0.711517 -   1.8s
[CV] c1=0.3890080123705456, c2=0.06863542905418545 ...................
[CV]  c1=0.3890080123705456, c2=0.06863542905418545, score=0.694284 -   1.9s
[CV] c1=0.9907276867534006, c2=0.015068999673777204 ..................
[CV]  c1=0.9907276867534006, c2=0.015068999673777204, score=0.908266 -   1.6s
[CV] c1=0.37993592904226775, c2=0.001287546330642171 .................
[CV]  c1=0.37993592904226775, c2=0.001287546330642171, score=0.696477 -   1.8s
[CV] c1=0.5132989845379167, c2=0.04018212909012408 ...................
[CV]  c1=0.5132989845379167, c2=0.04018212909012408, score=0.917821 -   1.5s
Training done in: 11.427793s
     Saving training model...
        Saving training model done in: 0.013545s
*********************************
Prediction done in: 0.047166s