Run8_v2.txt 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True True
Report file: _v2
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003745s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0      1
0       lemma      1
1      postag     CD
2    -1:lemma     pq
3   -1:postag     NN
4      hUpper  False
5      hLower  False
6      hGreek  False
7        symb  False
8    word[:1]      1
9        word      1
10    isUpper  False
11    isLower  False
12    isGreek  False
13   isNumber   True
14    -1:word     PQ
15   -2:lemma  δsoxs
16  -2:postag     NN
--------------------------- FeaturesTest -----------------------------
            0          1
0       lemma  delta-fnr
1      postag         NN
2    -1:lemma          _
3   -1:postag         NN
4    +1:lemma          _
5   +1:postag         CD
6      hUpper      False
7      hLower      False
8      hGreek      False
9        symb       True
10   word[:1]          d
11   word[:2]         de
12       word  delta-fnr
13    isUpper      False
14    isLower       True
15    isGreek      False
16   isNumber      False
17    -1:word          _
18    +1:word          _
19   -2:lemma    affyexp
20  -2:postag         JJ
21   +2:lemma    glucose
22  +2:postag         NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.860686 -   1.4s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.856606 -   2.1s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.860686 -   1.6s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.711685 -   1.9s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.918560 -   2.1s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.715283 -   1.5s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.883499 -   1.9s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.724487 -   1.9s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.680522 -   1.8s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.697314 -   1.5s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.860686 -   1.5s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.727640 -   2.1s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.871735 -   1.7s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.722958 -   1.6s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.860776 -   1.9s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.795468 -   1.6s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.759154 -   1.9s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.855051 -   1.9s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.863709 -   1.9s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.778562 -   1.8s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.708096 -   1.3s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.727640 -   1.9s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.673283 -   2.1s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.845435 -   2.0s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.847925 -   2.1s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.621599 -   1.6s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.717756 -   1.7s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.795468 -   1.8s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.801799 -   2.1s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.779671 -   1.9s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.961600 -   1.8s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.933241 -   2.0s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.706732 -   1.8s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.750626 -   1.9s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.759154 -   1.9s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.705910 -   1.5s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.802981 -   1.8s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.891699 -   2.0s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.848726 -   2.2s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.933241 -   2.0s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.868519 -   1.8s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.855051 -   1.9s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.790731 -   2.2s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.667213 -   1.9s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.906414 -   1.4s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.860682 -   2.0s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.917580 -   2.1s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.795856 -   1.9s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.885638 -   2.0s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.746316 -   1.8s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.705446 -   1.7s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.885638 -   1.9s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.896573 -   1.9s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.677691 -   1.6s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.732294 -   1.9s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.895764 -   2.1s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.802130 -   1.8s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.784018 -   1.9s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.860350 -   1.8s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.691162 -   1.6s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.735598 -   1.9s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.705265 -   1.8s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.702864 -   1.6s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.730482 -   1.8s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.680522 -   1.6s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.660504 -   1.8s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.778562 -   1.8s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.917580 -   2.0s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.768697 -   1.7s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.906414 -   2.1s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.900313 -   1.9s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.730917 -   1.9s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.657484 -   1.9s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.738645 -   1.6s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.865290 -   1.8s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.618706 -   1.6s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.868519 -   1.9s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.933241 -   1.9s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.906753 -   1.8s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.818747 -   1.8s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.790731 -   2.0s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.940922 -   1.9s
[CV] c1=0.9049035713403341, c2=0.021741456177008588 ..................
[CV]  c1=0.9049035713403341, c2=0.021741456177008588, score=0.925895 -   2.4s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.759154 -   1.9s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.902851 -   1.2s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.708096 -   1.7s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.702905 -   1.6s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.680522 -   1.6s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.880312 -   1.9s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.673283 -   1.5s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.735598 -   1.9s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.903262 -   2.2s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.692874 -   1.6s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.654653 -   1.6s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.775820 -   1.5s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.906414 -   1.8s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.876015 -   1.7s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.790731 -   1.9s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.752420 -   1.9s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.795468 -   1.5s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.860451 -   1.9s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.687710 -   2.0s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.660536 -   2.0s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.891699 -   2.2s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.925895 -   1.9s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.855051 -   1.8s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.759140 -   1.9s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.814637 -   2.0s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.790731 -   1.9s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.885638 -   2.1s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.868519 -   1.9s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.775820 -   1.9s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.710654 -   1.5s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.711685 -   1.9s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.729114 -   1.8s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.791847 -   1.9s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.868519 -   2.0s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.872764 -   2.0s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.795856 -   1.8s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.917580 -   1.6s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.885770 -   1.9s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.784987 -   1.9s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.860350 -   1.9s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.817651 -   1.8s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.657484 -   1.3s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.741095 -   1.8s
[CV] c1=0.49898154231973574, c2=0.00020584758644216306 ...............
[CV]  c1=0.49898154231973574, c2=0.00020584758644216306, score=0.906753 -   2.0s
[CV] c1=0.16114579362036052, c2=0.09197634743194505 ..................
[CV]  c1=0.16114579362036052, c2=0.09197634743194505, score=0.760655 -   2.3s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.732294 -   2.2s
[CV] c1=0.5180245113660787, c2=0.03601101440244791 ...................
[CV]  c1=0.5180245113660787, c2=0.03601101440244791, score=0.732929 -   2.0s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.876503 -   2.0s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.938643 -   2.1s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.775858 -   1.9s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.693226 -   2.0s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.940922 -   1.5s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.664861 -   1.8s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.891699 -   2.2s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.932866 -   2.0s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.836344 -   2.2s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.705446 -   1.5s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.775820 -   2.0s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.687710 -   2.2s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.925895 -   2.1s
[CV] c1=0.603209677420507, c2=0.0025056598967555105 ..................
[CV]  c1=0.603209677420507, c2=0.0025056598967555105, score=0.717098 -   1.9s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.714899 -   1.1s
[CV] c1=0.08997152792208764, c2=0.004363773952774669 .................
[CV]  c1=0.08997152792208764, c2=0.004363773952774669, score=0.784018 -   2.1s
[CV] c1=0.3286068152393628, c2=0.10962981701798313 ...................
[CV]  c1=0.3286068152393628, c2=0.10962981701798313, score=0.786699 -   2.1s
[CV] c1=0.6822425755498431, c2=0.020713938001918012 ..................
[CV]  c1=0.6822425755498431, c2=0.020713938001918012, score=0.743357 -   1.8s
[CV] c1=0.37575104918065877, c2=0.014068909404949474 .................
[CV]  c1=0.37575104918065877, c2=0.014068909404949474, score=0.932315 -   2.1s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.900313 -   1.9s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.746614 -   1.9s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.947043 -   1.9s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.868519 -   1.9s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.760289 -   1.8s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.802518 -   1.4s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.784987 -   1.9s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.765357 -   1.8s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.885638 -   2.0s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.776993 -   1.8s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.880312 -   1.6s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.784987 -   1.8s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.891699 -   1.9s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.891699 -   1.9s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.801799 -   2.0s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.855051 -   1.7s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.977820 -   1.9s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.947043 -   1.9s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.717098 -   2.1s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.880564 -   2.0s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.751956 -   1.5s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.891699 -   2.2s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.906414 -   2.0s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.868519 -   2.0s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.718052 -   1.6s
[CV] c1=0.14485727750148428, c2=0.21618502439248377 ..................
[CV]  c1=0.14485727750148428, c2=0.21618502439248377, score=0.891699 -   2.1s
[CV] c1=0.05199276558605893, c2=0.0702365499252205 ...................
[CV]  c1=0.05199276558605893, c2=0.0702365499252205, score=0.940922 -   2.1s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.795468 -   1.8s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.895764 -   2.1s
[CV] c1=0.8844076483955583, c2=0.11585472431298503 ...................
[CV]  c1=0.8844076483955583, c2=0.11585472431298503, score=0.925895 -   2.0s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.711685 -   1.6s
[CV] c1=0.1380082549956592, c2=0.015618296578657088 ..................
[CV]  c1=0.1380082549956592, c2=0.015618296578657088, score=0.690217 -   1.6s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.906414 -   2.0s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.860614 -   2.2s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.717051 -   1.7s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.863709 -   1.6s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.906414 -   2.0s
[CV] c1=0.06155533734282551, c2=0.11747794204884306 ..................
[CV]  c1=0.06155533734282551, c2=0.11747794204884306, score=0.855051 -   1.9s
[CV] c1=0.32267196716974095, c2=0.030929293399615435 .................
[CV]  c1=0.32267196716974095, c2=0.030929293399615435, score=0.925895 -   2.0s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.699424 -   1.9s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.821625 -   1.7s
[CV] c1=0.08369291557347798, c2=0.012233988100281703 .................
[CV]  c1=0.08369291557347798, c2=0.012233988100281703, score=0.908780 -   2.0s
[CV] c1=0.14146941159261275, c2=0.0623745074286256 ...................
[CV]  c1=0.14146941159261275, c2=0.0623745074286256, score=0.732294 -   2.2s
[CV] c1=0.5149952083751863, c2=0.020547420013119894 ..................
[CV]  c1=0.5149952083751863, c2=0.020547420013119894, score=0.791382 -   1.9s
[CV] c1=1.1812306284364236, c2=0.008430514440727933 ..................
[CV]  c1=1.1812306284364236, c2=0.008430514440727933, score=0.827582 -   1.9s
[CV] c1=0.8585868277805841, c2=0.018563372539478897 ..................
[CV]  c1=0.8585868277805841, c2=0.018563372539478897, score=0.795856 -   1.7s
Training done in: 12.580321s
     Saving training model...
        Saving training model done in: 0.013719s
*********************************
Prediction done in: 0.043038s