Run8_v1.txt 27.9 KB
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True True
Report file: _v9
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003941s
{'lemma': 'δsoxs', 'postag': 'NN', '+1:lemma': 'pq', '+1:postag': 'NN'}
{'lemma': 'affyexp', 'postag': 'JJ', '+1:lemma': '_', '+1:postag': 'NN'}
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.739174 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.867500 -   1.2s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.883871 -   1.2s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.682045 -   1.3s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.592237 -   0.8s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.674776 -   1.0s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.861398 -   1.1s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.592237 -   0.9s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.747150 -   1.4s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.679766 -   0.8s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.713945 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.713945 -   1.2s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.632439 -   1.0s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.721334 -   1.2s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.735607 -   1.0s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.593330 -   1.0s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.848001 -   1.2s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.753693 -   1.1s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.761418 -   1.2s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.724290 -   1.1s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.578486 -   0.9s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.906853 -   1.3s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.737308 -   1.2s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.556324 -   0.9s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.920970 -   1.2s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.704452 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.912680 -   1.1s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.581649 -   1.0s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.715320 -   1.1s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.784950 -   1.0s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.814619 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.854246 -   1.3s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.899703 -   1.2s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.563779 -   1.1s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.740663 -   1.0s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.906853 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.920970 -   1.1s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.819818 -   1.1s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.860755 -   1.3s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.652192 -   1.1s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.669071 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.656490 -   1.0s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.705332 -   1.1s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.920970 -   1.2s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.737308 -   1.0s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.887557 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.865426 -   1.2s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.860755 -   1.3s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.656490 -   1.1s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.906853 -   1.0s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.872399 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.753693 -   1.1s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.814619 -   1.1s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.854423 -   1.0s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.652192 -   1.0s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.794740 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.860755 -   1.1s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.869740 -   1.2s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.723593 -   1.0s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.704866 -   1.0s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.748048 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.637082 -   1.0s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.758128 -   1.1s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.673541 -   1.1s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.867500 -   1.1s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.843407 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.716313 -   1.1s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.920970 -   1.0s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.680407 -   0.9s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.721334 -   1.1s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.866790 -   1.2s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.600487 -   0.9s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.810663 -   1.2s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.866790 -   1.5s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.872249 -   1.1s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.740663 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.734847 -   1.3s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.674776 -   1.1s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.899703 -   1.3s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.600487 -   1.1s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.878327 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.561392 -   0.9s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.917838 -   1.1s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.784199 -   1.4s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.866790 -   1.2s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.641268 -   0.9s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.708833 -   1.2s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.720311 -   1.3s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.518845 -   0.9s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.946561 -   1.1s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.741434 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.866790 -   1.2s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.872031 -   1.1s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.601082 -   1.0s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.766835 -   1.1s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.899703 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.858333 -   1.1s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.864349 -   1.1s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.599660 -   1.1s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.721334 -   1.3s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.674776 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.727470 -   1.2s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.652192 -   1.1s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.899703 -   1.2s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.775757 -   1.2s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.654823 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.608985 -   1.0s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.866790 -   1.1s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.744499 -   1.0s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.659121 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.727470 -   1.1s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.724515 -   1.1s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.659121 -   1.0s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.843581 -   1.0s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.899703 -   1.3s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.848001 -   1.1s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.741434 -   1.2s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.608719 -   0.9s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.643620 -   1.2s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.896193 -   1.1s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.924594 -   1.2s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.895411 -   1.1s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.761019 -   1.1s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.831084 -   1.0s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.852821 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.883871 -   1.1s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.838429 -   1.1s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.739174 -   1.1s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.840539 -   0.9s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.920970 -   1.1s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.725767 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.794740 -   1.1s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.872249 -   1.3s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.639214 -   1.1s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.764863 -   1.1s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.779725 -   1.1s
[CV] c1=0.2107941425103855, c2=0.07645318409354064 ...................
[CV]  c1=0.2107941425103855, c2=0.07645318409354064, score=0.730124 -   1.2s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.721334 -   1.2s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.848001 -   1.3s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.906853 -   1.1s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.912680 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.883954 -   1.1s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.899703 -   1.1s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.919762 -   1.3s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.848001 -   1.2s
[CV] c1=0.1827955499307428, c2=0.002673779161901005 ..................
[CV]  c1=0.1827955499307428, c2=0.002673779161901005, score=0.710539 -   1.3s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.679766 -   1.1s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.712255 -   1.1s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.720311 -   0.9s
[CV] c1=0.14547316667964716, c2=0.04275866782811716 ..................
[CV]  c1=0.14547316667964716, c2=0.04275866782811716, score=0.838429 -   1.0s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.687750 -   1.3s
[CV] c1=0.010916997872083896, c2=0.01703042309947876 .................
[CV]  c1=0.010916997872083896, c2=0.01703042309947876, score=0.935386 -   1.2s
[CV] c1=0.11923109411090525, c2=0.08712148554319654 ..................
[CV]  c1=0.11923109411090525, c2=0.08712148554319654, score=0.730124 -   1.1s
[CV] c1=1.5310724688252555, c2=0.007849882070317076 ..................
[CV]  c1=1.5310724688252555, c2=0.007849882070317076, score=0.672745 -   1.1s
[CV] c1=0.3610226719997963, c2=0.029611486118589044 ..................
[CV]  c1=0.3610226719997963, c2=0.029611486118589044, score=0.841313 -   1.1s
[CV] c1=0.0893601644204355, c2=0.024019081127496116 ..................
[CV]  c1=0.0893601644204355, c2=0.024019081127496116, score=0.920970 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.704526 -   1.2s
[CV] c1=0.33894023669353496, c2=0.021885953440521758 .................
[CV]  c1=0.33894023669353496, c2=0.021885953440521758, score=0.920970 -   1.1s
[CV] c1=0.48934294075061485, c2=0.059643580535587194 .................
[CV]  c1=0.48934294075061485, c2=0.059643580535587194, score=0.852821 -   1.4s
[CV] c1=0.005890787510878062, c2=0.06901405430753309 .................
[CV]  c1=0.005890787510878062, c2=0.06901405430753309, score=0.607039 -   0.9s
[CV] c1=0.7907559657386046, c2=0.04221232955070474 ...................
[CV]  c1=0.7907559657386046, c2=0.04221232955070474, score=0.737619 -   1.1s
[CV] c1=0.6067183285356851, c2=0.02508677467384688 ...................
[CV]  c1=0.6067183285356851, c2=0.02508677467384688, score=0.761818 -   1.1s
[CV] c1=0.43870196113001303, c2=0.10254088863167253 ..................
[CV]  c1=0.43870196113001303, c2=0.10254088863167253, score=0.562376 -   0.9s
[CV] c1=0.4124010091584731, c2=0.03226124445670804 ...................
[CV]  c1=0.4124010091584731, c2=0.03226124445670804, score=0.784950 -   0.9s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.607039 -   0.7s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.747150 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.687454 -   1.1s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.935386 -   1.1s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.852821 -   1.1s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.660510 -   0.9s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.912680 -   1.4s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.608985 -   1.0s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.923613 -   1.2s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.878327 -   1.1s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.775757 -   0.9s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.578486 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.902145 -   1.2s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.920970 -   1.3s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.578486 -   0.9s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.866790 -   1.0s
[CV] c1=0.6805169695271499, c2=0.059941860636124 .....................
[CV]  c1=0.6805169695271499, c2=0.059941860636124, score=0.794740 -   1.1s
[CV] c1=0.002248053678487388, c2=0.022468299598165514 ................
[CV]  c1=0.002248053678487388, c2=0.022468299598165514, score=0.935386 -   1.2s
[CV] c1=0.11105424454358216, c2=0.015741660010216145 .................
[CV]  c1=0.11105424454358216, c2=0.015741660010216145, score=0.741434 -   1.1s
[CV] c1=0.6648810381927359, c2=0.08001031738332513 ...................
[CV]  c1=0.6648810381927359, c2=0.08001031738332513, score=0.794740 -   1.1s
[CV] c1=0.06371903845172723, c2=0.09382386151498534 ..................
[CV]  c1=0.06371903845172723, c2=0.09382386151498534, score=0.881938 -   1.0s
Training done in: 7.467291s
     Saving training model...
        Saving training model done in: 0.015227s
*********************************
Prediction done in: 0.026117s