Run4_v2.txt 28.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True True
Report file: _v2
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.004035s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
            0      1
0       lemma      1
1      postag     CD
2    -1:lemma     pq
3   -1:postag     NN
4      hUpper  False
5      hLower  False
6      hGreek  False
7        symb  False
8    word[:1]      1
9        word      1
10    isUpper  False
11    isLower  False
12    isGreek  False
13   isNumber   True
14    -1:word     PQ
--------------------------- FeaturesTest -----------------------------
            0          1
0       lemma  delta-fnr
1      postag         NN
2    -1:lemma          _
3   -1:postag         NN
4    +1:lemma          _
5   +1:postag         CD
6      hUpper      False
7      hLower      False
8      hGreek      False
9        symb       True
10   word[:1]          d
11   word[:2]         de
12       word  delta-fnr
13    isUpper      False
14    isLower       True
15    isGreek      False
16   isNumber      False
17    -1:word          _
18    +1:word          _
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.719482 -   1.7s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.964829 -   1.8s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.671893 -   1.4s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.860861 -   1.8s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.714313 -   1.7s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.932342 -   1.5s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.893986 -   1.6s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.850267 -   1.6s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.713686 -   1.4s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.728846 -   1.7s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.715320 -   1.7s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.854753 -   1.6s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.644709 -   1.7s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.868023 -   2.1s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.628257 -   1.6s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.729114 -   1.5s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.805804 -   1.7s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.630354 -   1.3s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.714493 -   1.6s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.750968 -   1.8s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.696002 -   1.5s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.664975 -   1.4s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.745162 -   1.7s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.792078 -   1.8s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.947941 -   1.6s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.628257 -   1.4s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.718319 -   1.8s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.855472 -   1.7s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.757924 -   1.8s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.885770 -   1.9s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.885770 -   1.8s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.708131 -   1.3s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.709305 -   1.6s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.709789 -   1.9s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.854474 -   1.8s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.706850 -   1.6s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.778194 -   1.4s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.657958 -   1.7s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.718319 -   2.0s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.879698 -   1.9s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.760487 -   1.3s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.733738 -   1.8s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.666232 -   1.7s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.887504 -   2.0s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.729277 -   1.6s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.766835 -   1.6s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.868023 -   1.8s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.682610 -   1.6s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.959209 -   1.8s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.778194 -   1.8s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.885770 -   1.8s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.730987 -   1.4s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.709789 -   1.6s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.887052 -   1.7s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.779163 -   1.6s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.864078 -   1.8s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.747961 -   1.6s
[CV] c1=1.6285175067140285, c2=0.06773142195214325 ...................
[CV]  c1=1.6285175067140285, c2=0.06773142195214325, score=0.883968 -   1.6s
[CV] c1=0.30683200632675367, c2=0.019783947264900577 .................
[CV]  c1=0.30683200632675367, c2=0.019783947264900577, score=0.941969 -   1.8s
[CV] c1=0.03158220752670695, c2=0.051210940198560144 .................
[CV]  c1=0.03158220752670695, c2=0.051210940198560144, score=0.901159 -   1.9s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.709789 -   1.7s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.883806 -   1.6s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.849709 -   1.7s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.930418 -   1.7s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.888519 -   1.7s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.881641 -   1.8s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.887052 -   1.8s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.720815 -   1.5s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.852225 -   1.8s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.880778 -   1.4s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.715254 -   1.7s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.807056 -   1.6s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.855472 -   1.8s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.779866 -   1.7s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.943602 -   1.8s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.847994 -   1.7s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.919451 -   1.5s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.657337 -   1.7s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.876022 -   1.9s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.943015 -   1.6s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.941969 -   1.7s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.704193 -   2.0s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.729114 -   1.8s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.696480 -   1.8s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.696480 -   1.7s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.901159 -   1.7s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.737623 -   1.9s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.814578 -   1.8s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.698638 -   1.6s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.902851 -   1.7s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.893939 -   1.6s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.714493 -   1.3s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.644709 -   1.6s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.709841 -   1.9s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.718319 -   1.8s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.839790 -   1.6s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.692982 -   1.6s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.746445 -   1.7s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.667313 -   1.8s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.747466 -   1.4s
[CV] c1=0.07231471163871557, c2=0.09430964775259432 ..................
[CV]  c1=0.07231471163871557, c2=0.09430964775259432, score=0.884598 -   1.7s
[CV] c1=0.2858121257516539, c2=0.017143803593821803 ..................
[CV]  c1=0.2858121257516539, c2=0.017143803593821803, score=0.932342 -   1.8s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.703764 -   1.8s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.880433 -   1.9s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.792078 -   1.9s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.723951 -   1.5s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.715254 -   1.7s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.885770 -   1.8s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.901133 -   1.8s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.674297 -   1.5s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.763480 -   1.9s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.828415 -   1.8s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.952185 -   1.9s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.685915 -   1.5s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.852225 -   1.6s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.754322 -   1.7s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.675603 -   1.6s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.861212 -   1.9s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.932342 -   1.7s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.600747 -   1.4s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.868023 -   1.4s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.837432 -   1.7s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.655059 -   1.8s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.719074 -   1.8s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.719074 -   1.7s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.603309 -   1.3s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.787795 -   1.7s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.719482 -   1.6s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.674297 -   1.6s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.854753 -   1.7s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.849461 -   1.9s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.849461 -   1.9s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.932342 -   1.8s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.692156 -   1.8s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.714313 -   1.4s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.705001 -   1.6s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.932342 -   1.9s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.798468 -   1.7s
[CV] c1=0.48552233382782606, c2=0.16512343963590606 ..................
[CV]  c1=0.48552233382782606, c2=0.16512343963590606, score=0.887504 -   1.7s
[CV] c1=0.4728739554959987, c2=0.22420666837898567 ...................
[CV]  c1=0.4728739554959987, c2=0.22420666837898567, score=0.887504 -   1.5s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.880778 -   1.9s
[CV] c1=1.0979918753546847, c2=0.002918879102946894 ..................
[CV]  c1=1.0979918753546847, c2=0.002918879102946894, score=0.699725 -   1.3s
[CV] c1=1.9851987092826848, c2=0.05255571087688783 ...................
[CV]  c1=1.9851987092826848, c2=0.05255571087688783, score=0.657958 -   1.8s
[CV] c1=0.7263916143048589, c2=0.031205799626709132 ..................
[CV]  c1=0.7263916143048589, c2=0.031205799626709132, score=0.811024 -   1.8s
[CV] c1=0.19555004078116134, c2=0.013719557943369584 .................
[CV]  c1=0.19555004078116134, c2=0.013719557943369584, score=0.873401 -   1.7s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.933701 -   1.6s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.901764 -   1.7s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.651984 -   1.4s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.875476 -   1.8s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.706850 -   1.4s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.732294 -   1.8s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.876022 -   1.7s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.792078 -   1.9s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.719347 -   1.3s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.728846 -   1.5s
[CV] c1=0.4078998263978875, c2=0.03823537952712818 ...................
[CV]  c1=0.4078998263978875, c2=0.03823537952712818, score=0.746445 -   1.7s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.719074 -   1.8s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.938702 -   1.6s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.750923 -   1.7s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.854474 -   1.4s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.943602 -   1.7s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.705909 -   1.6s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.698041 -   1.7s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.699565 -   1.7s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.778194 -   1.4s
[CV] c1=0.5522760556298829, c2=0.011764289096805257 ..................
[CV]  c1=0.5522760556298829, c2=0.011764289096805257, score=0.887504 -   1.8s
[CV] c1=0.6094784835218059, c2=0.01690933209411638 ...................
[CV]  c1=0.6094784835218059, c2=0.01690933209411638, score=0.881641 -   1.9s
[CV] c1=0.4346959767707268, c2=0.004694241666253667 ..................
[CV]  c1=0.4346959767707268, c2=0.004694241666253667, score=0.882037 -   1.8s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.664975 -   1.9s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.943015 -   1.3s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.885770 -   1.7s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.843229 -   1.7s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.860861 -   1.7s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.788564 -   1.9s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.624694 -   1.3s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.888519 -   1.6s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.680329 -   1.3s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.872268 -   1.7s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.684029 -   1.6s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.891699 -   1.5s
[CV] c1=0.10648945642165056, c2=0.015449511254995961 .................
[CV]  c1=0.10648945642165056, c2=0.015449511254995961, score=0.792078 -   1.6s
[CV] c1=0.8236049945299427, c2=0.15208965114284034 ...................
[CV]  c1=0.8236049945299427, c2=0.15208965114284034, score=0.925608 -   1.7s
[CV] c1=0.046498819434789694, c2=0.007495861195002632 ................
[CV]  c1=0.046498819434789694, c2=0.007495861195002632, score=0.870252 -   1.7s
[CV] c1=1.3104946340308028, c2=0.016932301174739674 ..................
[CV]  c1=1.3104946340308028, c2=0.016932301174739674, score=0.871212 -   1.7s
[CV] c1=0.021441360234559073, c2=0.04563400559940925 .................
[CV]  c1=0.021441360234559073, c2=0.04563400559940925, score=0.855704 -   1.4s
Training done in: 11.278545s
     Saving training model...
        Saving training model done in: 0.014307s
*********************************
Prediction done in: 0.041099s