Run2_v2.txt 29.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True False
Report file: _v2
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003846s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
           0      1
0      lemma      1
1     postag     CD
2   -1:lemma     pq
3  -1:postag     NN
4     hUpper  False
5     hLower  False
6     hGreek  False
7       symb  False
8   word[:1]      1
--------------------------- FeaturesTest -----------------------------
            0          1
0       lemma  delta-fnr
1      postag         NN
2    -1:lemma          _
3   -1:postag         NN
4    +1:lemma          _
5   +1:postag         CD
6      hUpper      False
7      hLower      False
8      hGreek      False
9        symb       True
10   word[:1]          d
11   word[:2]         de
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.692390 -   1.1s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.677656 -   1.4s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.697829 -   1.6s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.720638 -   1.4s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.716901 -   1.5s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.866982 -   1.4s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.701470 -   1.2s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.687400 -   1.3s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.941969 -   1.5s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.712895 -   1.1s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.764724 -   1.3s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.691639 -   1.4s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.765131 -   1.3s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.891979 -   1.4s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.704318 -   1.4s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.679052 -   1.4s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.723654 -   1.3s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.882037 -   1.4s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.687400 -   1.3s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.885770 -   1.5s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.895305 -   1.2s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.782459 -   1.6s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.911666 -   1.5s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.697504 -   1.4s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.696275 -   0.9s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.706631 -   1.1s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.685539 -   1.4s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.871122 -   1.5s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.765131 -   1.5s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.747961 -   1.4s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.704197 -   1.3s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.768514 -   1.3s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.729114 -   1.4s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.692390 -   1.3s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.686683 -   1.4s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.680303 -   1.2s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.679944 -   1.3s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.724757 -   1.4s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.700894 -   1.7s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.876503 -   1.6s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.692577 -   1.2s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.882037 -   1.3s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.866982 -   1.4s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.874383 -   1.5s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.780716 -   1.3s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.711689 -   1.3s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.925608 -   1.3s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.686683 -   1.2s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.699064 -   1.2s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.891477 -   1.4s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.746445 -   1.4s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.704118 -   1.3s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.889040 -   1.4s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.758798 -   1.3s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.714313 -   1.2s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.798839 -   1.5s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.761432 -   1.4s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.810699 -   1.5s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.691266 -   1.1s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.925608 -   1.4s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.859428 -   1.3s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.716965 -   1.4s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.932342 -   1.5s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.891477 -   1.5s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.816091 -   1.4s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.876688 -   1.5s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.849726 -   1.5s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.711634 -   1.1s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.771801 -   1.3s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.849461 -   1.4s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.715703 -   1.4s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.846342 -   1.6s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.888767 -   1.5s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.679944 -   1.5s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.686683 -   1.2s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.718007 -   1.4s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.792078 -   1.4s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.810699 -   1.4s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.925608 -   1.5s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.903464 -   1.3s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.880433 -   1.6s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.687131 -   1.3s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.941969 -   1.3s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.715703 -   1.3s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.723701 -   1.4s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.871122 -   1.2s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.744258 -   1.4s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.876688 -   1.6s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.879709 -   1.6s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.684422 -   1.2s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.891832 -   1.3s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.688230 -   1.2s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.866982 -   1.7s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.687131 -   1.3s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.888767 -   1.4s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.763480 -   1.1s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.855607 -   1.4s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.719482 -   1.3s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.871212 -   1.4s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.941969 -   1.4s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.882037 -   1.6s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.697829 -   1.4s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.719482 -   1.3s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.850209 -   1.4s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.792078 -   1.3s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.871122 -   1.6s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.857046 -   1.4s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.894297 -   1.5s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.866982 -   1.5s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.740829 -   1.0s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.711689 -   1.5s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.679944 -   1.4s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.714313 -   1.3s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.858419 -   1.7s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.711634 -   1.2s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.925608 -   1.3s
[CV] c1=1.4589431115727765, c2=0.00462048934522589 ...................
[CV]  c1=1.4589431115727765, c2=0.00462048934522589, score=0.855472 -   1.5s
[CV] c1=0.47432740691636344, c2=0.03758235542198346 ..................
[CV]  c1=0.47432740691636344, c2=0.03758235542198346, score=0.770984 -   1.4s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.871122 -   1.6s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.692390 -   1.5s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.859428 -   1.5s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.687666 -   1.2s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.729114 -   1.4s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.825145 -   1.5s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.888767 -   1.3s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.766835 -   1.6s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.759758 -   1.6s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.888767 -   1.4s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.876781 -   1.4s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.687400 -   1.0s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.876503 -   1.3s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.850209 -   1.4s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.723701 -   1.5s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.859690 -   1.4s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.723701 -   1.3s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.902851 -   1.4s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.880433 -   1.7s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.941969 -   1.3s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.765131 -   1.3s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.891979 -   1.2s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.700894 -   1.3s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.677656 -   1.4s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.624894 -   1.1s
[CV] c1=0.4819640275387183, c2=0.029691473721229295 ..................
[CV]  c1=0.4819640275387183, c2=0.029691473721229295, score=0.753206 -   1.4s
[CV] c1=0.21506344691612903, c2=0.02416742878069053 ..................
[CV]  c1=0.21506344691612903, c2=0.02416742878069053, score=0.884140 -   1.5s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.686683 -   1.3s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.706106 -   1.4s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.903464 -   1.4s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.840562 -   1.4s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.833236 -   1.4s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.703909 -   1.2s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.871122 -   1.2s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.885770 -   1.4s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.696240 -   1.3s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.885770 -   1.3s
[CV] c1=0.7552293645263738, c2=0.010542927773867011 ..................
[CV]  c1=0.7552293645263738, c2=0.010542927773867011, score=0.804468 -   1.6s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.895305 -   1.4s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.686683 -   1.4s
[CV] c1=0.7298207185304556, c2=0.03502458791701493 ...................
[CV]  c1=0.7298207185304556, c2=0.03502458791701493, score=0.715703 -   1.5s
[CV] c1=0.7034919312846388, c2=0.0024933361931142694 .................
[CV]  c1=0.7034919312846388, c2=0.0024933361931142694, score=0.859428 -   1.4s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.709724 -   1.3s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.825145 -   1.4s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.888767 -   1.3s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.925608 -   1.4s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.943015 -   1.3s
[CV] c1=0.5467988707284427, c2=0.00803194900725053 ...................
[CV]  c1=0.5467988707284427, c2=0.00803194900725053, score=0.941969 -   1.4s
[CV] c1=1.0834398150991624, c2=0.003997536598295317 ..................
[CV]  c1=1.0834398150991624, c2=0.003997536598295317, score=0.699806 -   1.3s
[CV] c1=0.0978143608714834, c2=0.07833099658452108 ...................
[CV]  c1=0.0978143608714834, c2=0.07833099658452108, score=0.885770 -   1.3s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.849474 -   1.4s
[CV] c1=0.20192101167465534, c2=0.04531597351347868 ..................
[CV]  c1=0.20192101167465534, c2=0.04531597351347868, score=0.895305 -   1.3s
[CV] c1=0.298080277984045, c2=0.05416968597972857 ....................
[CV]  c1=0.298080277984045, c2=0.05416968597972857, score=0.941969 -   1.4s
[CV] c1=0.350973260533853, c2=0.010037581949873645 ...................
[CV]  c1=0.350973260533853, c2=0.010037581949873645, score=0.941969 -   1.3s
[CV] c1=0.06546675625130262, c2=0.059226785100600615 .................
[CV]  c1=0.06546675625130262, c2=0.059226785100600615, score=0.889759 -   1.6s
[CV] c1=0.8446622313160173, c2=0.03942509766742223 ...................
[CV]  c1=0.8446622313160173, c2=0.03942509766742223, score=0.788536 -   1.7s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.718007 -   1.3s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.882037 -   1.5s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.859428 -   1.4s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.801514 -   1.6s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.699863 -   1.1s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.879055 -   1.2s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.747961 -   1.7s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.685577 -   1.3s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.767805 -   1.3s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.891477 -   1.4s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.866982 -   1.3s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.895305 -   1.5s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.765131 -   1.4s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.905956 -   1.5s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.941969 -   1.4s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.877324 -   1.2s
[CV] c1=0.24706375983667295, c2=0.024420937052355998 .................
[CV]  c1=0.24706375983667295, c2=0.024420937052355998, score=0.943015 -   1.5s
[CV] c1=0.5752830046115532, c2=0.029011946679537343 ..................
[CV]  c1=0.5752830046115532, c2=0.029011946679537343, score=0.941969 -   1.5s
[CV] c1=0.12822074735920433, c2=0.028255623123597452 .................
[CV]  c1=0.12822074735920433, c2=0.028255623123597452, score=0.712895 -   1.3s
[CV] c1=0.5405494603106622, c2=0.02185761043719437 ...................
[CV]  c1=0.5405494603106622, c2=0.02185761043719437, score=0.746445 -   1.4s
[CV] c1=0.3811975088263534, c2=0.09035610955818969 ...................
[CV]  c1=0.3811975088263534, c2=0.09035610955818969, score=0.941969 -   1.2s
Training done in: 9.118032s
     Saving training model...
        Saving training model done in: 0.013122s
*********************************
Prediction done in: 0.030181s