Run2_v1.txt 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70_v4.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30_v4.txt
Exclude stop words: False
Levels: True False
Report file: _v9
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
   Sentences training data: 283
   Sentences test data: 122
Reading corpus done in: 0.003666s
{'lemma': 'δsoxs', 'postag': 'NN', '+1:lemma': 'pq', '+1:postag': 'NN'}
{'lemma': 'affyexp', 'postag': 'JJ', '+1:lemma': '_', '+1:postag': 'NN'}
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.656999 -   1.0s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.549071 -   0.9s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.559946 -   0.9s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.840539 -   1.1s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.660012 -   1.2s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.826261 -   0.8s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.919762 -   1.0s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.761818 -   1.1s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.848001 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.761418 -   1.1s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.716676 -   0.9s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.670684 -   1.1s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.872399 -   1.1s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.743125 -   1.1s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.838429 -   1.0s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.641040 -   0.9s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.704277 -   1.0s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.694072 -   1.2s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.694072 -   1.2s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.679766 -   1.1s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.787287 -   0.8s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.724007 -   1.1s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.719596 -   1.2s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.919762 -   1.0s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.852821 -   1.2s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.566523 -   1.1s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.704866 -   1.2s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.576589 -   1.0s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.666440 -   1.0s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.721334 -   1.3s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.761818 -   1.0s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.660510 -   1.2s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.891760 -   1.2s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.607039 -   0.9s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.848001 -   1.3s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.852821 -   1.1s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.592237 -   1.0s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.843338 -   1.2s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.718941 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.899703 -   1.3s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.848001 -   1.0s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.787287 -   1.1s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.739174 -   1.3s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.753693 -   1.1s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.848001 -   1.1s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.760479 -   1.1s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.606581 -   1.1s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.661884 -   1.2s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.855614 -   1.2s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.876920 -   1.0s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.740663 -   1.2s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.797002 -   1.2s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.883954 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.716266 -   1.3s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.858883 -   0.7s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.721334 -   1.2s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.693442 -   1.1s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.720311 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.874700 -   1.2s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.899703 -   1.5s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.571166 -   0.9s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.935386 -   1.2s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.586182 -   0.9s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.581925 -   0.9s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.912680 -   0.9s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.872249 -   1.2s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.903565 -   1.2s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.906853 -   1.1s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.561061 -   1.1s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.794740 -   0.9s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.869740 -   1.3s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.753693 -   1.1s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.766835 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.920970 -   1.1s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.906853 -   1.4s
[CV] c1=0.7463567881969966, c2=0.010504031522292094 ..................
[CV]  c1=0.7463567881969966, c2=0.010504031522292094, score=0.852821 -   1.1s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.887557 -   1.2s
[CV] c1=0.48395276763378503, c2=0.022365459591399905 .................
[CV]  c1=0.48395276763378503, c2=0.022365459591399905, score=0.729308 -   1.1s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.870586 -   1.2s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.883954 -   1.1s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.932448 -   1.1s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.879383 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.748850 -   0.9s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.843407 -   1.3s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.787287 -   1.2s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.753693 -   1.0s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.721192 -   1.1s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.590583 -   0.8s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.593824 -   0.9s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.653248 -   1.1s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.666440 -   1.0s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.848001 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.866790 -   0.9s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.686713 -   1.0s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.761818 -   1.2s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.727470 -   1.1s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.719596 -   1.2s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.679766 -   1.0s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.688946 -   1.0s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.860755 -   1.3s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.906853 -   1.1s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.674776 -   1.0s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.920970 -   1.2s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.715320 -   1.2s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.656490 -   1.1s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.912680 -   1.1s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.852821 -   1.1s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.740663 -   1.2s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.919762 -   1.1s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.682045 -   1.1s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.716313 -   1.2s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.899703 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.592237 -   0.9s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.674776 -   1.3s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.624832 -   1.0s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.704526 -   1.2s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.656999 -   1.0s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.742853 -   1.0s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.656490 -   1.1s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.678288 -   1.2s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.737619 -   1.3s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.548511 -   1.1s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.906853 -   1.2s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.584074 -   0.9s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.673541 -   1.1s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.852146 -   1.1s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.883954 -   1.2s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.724515 -   1.1s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.571166 -   1.0s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.899703 -   1.2s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.817004 -   1.3s
[CV] c1=0.6765797517220264, c2=0.007434912899378703 ..................
[CV]  c1=0.6765797517220264, c2=0.007434912899378703, score=0.903565 -   1.1s
[CV] c1=0.20078106949479455, c2=0.023670407350363146 .................
[CV]  c1=0.20078106949479455, c2=0.023670407350363146, score=0.796488 -   1.3s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.713917 -   1.2s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.776399 -   1.2s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.695544 -   1.3s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.710539 -   1.2s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.843407 -   1.1s
[CV] c1=1.00966870162731, c2=0.025958556376657574 ....................
[CV]  c1=1.00966870162731, c2=0.025958556376657574, score=0.678696 -   1.1s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.912680 -   1.2s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.649105 -   1.1s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.851740 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.924594 -   1.1s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.717253 -   1.1s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.852672 -   1.3s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.741434 -   1.2s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.911855 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.906853 -   1.0s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.848001 -   1.4s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.698982 -   1.2s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.547996 -   0.9s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.716676 -   1.1s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.559475 -   0.9s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.715320 -   1.3s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.698982 -   1.2s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.679766 -   1.2s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.766379 -   1.1s
[CV] c1=0.10973444640225576, c2=0.010828669158530741 .................
[CV]  c1=0.10973444640225576, c2=0.010828669158530741, score=0.920970 -   1.1s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.800678 -   1.2s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.624124 -   1.1s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.857493 -   1.2s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.701526 -   1.1s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.596309 -   0.9s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.920970 -   1.2s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.691841 -   1.1s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.778347 -   1.2s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.566256 -   1.0s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.773116 -   0.9s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.632439 -   0.7s
[CV] c1=0.22656149469246054, c2=0.06475330717049832 ..................
[CV]  c1=0.22656149469246054, c2=0.06475330717049832, score=0.652192 -   1.0s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.852672 -   1.2s
[CV] c1=0.06766924551335582, c2=0.05664528713448661 ..................
[CV]  c1=0.06766924551335582, c2=0.05664528713448661, score=0.654823 -   1.0s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.836651 -   1.1s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.588339 -   0.9s
[CV] c1=0.37276009448707553, c2=0.08055336693981598 ..................
[CV]  c1=0.37276009448707553, c2=0.08055336693981598, score=0.748070 -   1.1s
[CV] c1=0.6326902790510075, c2=0.060383400796135134 ..................
[CV]  c1=0.6326902790510075, c2=0.060383400796135134, score=0.794740 -   1.2s
[CV] c1=0.016463867524667154, c2=0.009787977090088149 ................
[CV]  c1=0.016463867524667154, c2=0.009787977090088149, score=0.866790 -   1.3s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.687750 -   1.4s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.512837 -   0.7s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.876920 -   1.4s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.564654 -   0.9s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.843338 -   1.1s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.856715 -   1.2s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.657444 -   0.9s
[CV] c1=0.6395797105929565, c2=0.0461197515046378 ....................
[CV]  c1=0.6395797105929565, c2=0.0461197515046378, score=0.883954 -   1.2s
[CV] c1=1.168847855695387, c2=0.054074754440257625 ...................
[CV]  c1=1.168847855695387, c2=0.054074754440257625, score=0.686713 -   1.2s
[CV] c1=0.7823077481969921, c2=0.03404532137185433 ...................
[CV]  c1=0.7823077481969921, c2=0.03404532137185433, score=0.891760 -   1.3s
[CV] c1=0.2837138419533594, c2=0.009966189901122134 ..................
[CV]  c1=0.2837138419533594, c2=0.009966189901122134, score=0.740663 -   1.3s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.580569 -   1.0s
[CV] c1=0.16888346085657382, c2=0.02208269716963201 ..................
[CV]  c1=0.16888346085657382, c2=0.02208269716963201, score=0.713945 -   1.3s
[CV] c1=0.8607518495035315, c2=0.15862627698471804 ...................
[CV]  c1=0.8607518495035315, c2=0.15862627698471804, score=0.654029 -   1.1s
[CV] c1=0.6168211659220036, c2=0.006845272732197598 ..................
[CV]  c1=0.6168211659220036, c2=0.006845272732197598, score=0.761818 -   1.2s
[CV] c1=0.9988969075737604, c2=0.006345198146357405 ..................
[CV]  c1=0.9988969075737604, c2=0.006345198146357405, score=0.787287 -   1.3s
[CV] c1=2.243122699972053, c2=0.02408920842785463 ....................
[CV]  c1=2.243122699972053, c2=0.02408920842785463, score=0.660504 -   0.9s
Training done in: 7.331329s
     Saving training model...
        Saving training model done in: 0.014029s
*********************************
Prediction done in: 0.024944s