Run_5.txt
29.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
-------------------------------- PARAMETERS --------------------------------
Path of training data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with training data set: training-data-set-70.txt
Path of test data set: /home/egaytan/automatic-extraction-growth-conditions/CRF/data-sets
File with test data set: test-data-set-30.txt
Exclude stop words: False
Levels: False False
Report file: _v13
Exclude symbols: False
-------------------------------- PROCESSING --------------------------------
Reading corpus...
Sentences training data: 286
Sentences test data: 123
Reading corpus done in: 0.003560s
-------------------------------- FEATURES --------------------------------
--------------------------Features Training ---------------------------
0 1
0 lemma 2
1 postag CD
2 -1:lemma fructose
3 -1:postag NN
4 -2:lemma Cra
5 -2:postag NNP
--------------------------- FeaturesTest -----------------------------
0 1
0 lemma delta-arca
1 postag NN
2 -1:lemma _
3 -1:postag NN
4 +1:lemma _
5 +1:postag CD
6 -2:lemma affyexp
7 -2:postag JJ
8 +2:lemma glucose
9 +2:postag NN
Fitting 10 folds for each of 20 candidates, totalling 200 fits
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.904317 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.866353 - 1.2s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.782679 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.844592 - 1.2s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.665848 - 1.2s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.935724 - 1.0s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.866353 - 1.1s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.777310 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.722395 - 1.2s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.566809 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.889632 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.893442 - 1.2s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.876191 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.796785 - 1.2s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.808421 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.884047 - 0.9s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.907978 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.697995 - 1.3s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.884047 - 1.1s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.681687 - 1.3s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.702102 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.892074 - 1.1s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.881520 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.874448 - 1.1s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.911799 - 1.1s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.935724 - 1.3s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.878257 - 1.2s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.799307 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.934983 - 1.1s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.823276 - 1.1s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.854811 - 1.0s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.842052 - 1.2s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.791206 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.836305 - 1.1s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.652057 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.934983 - 1.0s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.722395 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.620509 - 1.3s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.934983 - 1.1s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.661453 - 1.3s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.864680 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.797327 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.803280 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.864680 - 1.2s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.676857 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.924118 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.938750 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.925944 - 1.2s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.901233 - 1.2s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.839358 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.722395 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.954937 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.806520 - 1.3s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.854811 - 1.1s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.742882 - 1.3s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.934983 - 1.2s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.859890 - 1.2s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.612120 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.884047 - 1.0s
[CV] c1=2.282844107076996, c2=0.02119864096637369 ....................
[CV] c1=2.282844107076996, c2=0.02119864096637369, score=0.777084 - 1.2s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.922360 - 1.1s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.707667 - 1.2s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.722857 - 1.1s
[CV] c1=0.06582026288344721, c2=0.05682820602315697 ..................
[CV] c1=0.06582026288344721, c2=0.05682820602315697, score=0.935724 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.759131 - 1.3s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.842052 - 1.0s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.797327 - 1.3s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.844358 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.843508 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.839973 - 1.1s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.884047 - 1.1s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.902661 - 1.3s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.876191 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.722395 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.854874 - 1.2s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.796785 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.869105 - 1.3s
[CV] c1=1.1460943161482862, c2=0.026153895974214678 ..................
[CV] c1=1.1460943161482862, c2=0.026153895974214678, score=0.867125 - 1.4s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.901578 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.626801 - 1.3s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.806478 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.934983 - 1.1s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.814901 - 1.1s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.859890 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.787478 - 1.2s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.864680 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.845755 - 1.3s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.911204 - 1.1s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.697995 - 1.2s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.884047 - 1.1s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.737329 - 1.3s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.916469 - 1.3s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.722395 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.954937 - 1.0s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.907124 - 1.0s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.839355 - 1.2s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.925933 - 1.3s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.717653 - 1.3s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.777416 - 1.1s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.891392 - 1.2s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.706867 - 1.1s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.824358 - 1.2s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.713003 - 1.3s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.620509 - 1.2s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.864680 - 1.1s
[CV] c1=0.0977605809688258, c2=0.02758489827313711 ...................
[CV] c1=0.0977605809688258, c2=0.02758489827313711, score=0.842052 - 1.1s
[CV] c1=0.14456252410554848, c2=0.011570925278244349 .................
[CV] c1=0.14456252410554848, c2=0.011570925278244349, score=0.927980 - 1.3s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.752310 - 1.3s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.946778 - 1.2s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.804379 - 1.2s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.717653 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.843508 - 1.3s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.884047 - 1.1s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.796008 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.777416 - 0.9s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.954937 - 1.2s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.788527 - 1.1s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.817065 - 1.1s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.876191 - 1.1s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.722395 - 1.1s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.799307 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.859890 - 1.2s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.878774 - 1.2s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.796238 - 1.2s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.954937 - 1.1s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.612120 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.722395 - 1.2s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.626801 - 1.2s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.777310 - 1.3s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.889632 - 1.0s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.866353 - 1.2s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.701275 - 1.2s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.801130 - 1.2s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.915357 - 1.2s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.931814 - 1.0s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.722395 - 1.1s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.945584 - 1.2s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.694375 - 1.3s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.796785 - 1.3s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.913214 - 1.2s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.884038 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.874448 - 1.1s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.783151 - 1.3s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.806478 - 1.1s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.796785 - 1.2s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.900231 - 1.3s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.803280 - 1.1s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.934983 - 1.1s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.884047 - 1.1s
[CV] c1=0.09869732897335494, c2=0.023452935233575632 .................
[CV] c1=0.09869732897335494, c2=0.023452935233575632, score=0.842052 - 1.1s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.805308 - 1.3s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.858736 - 1.1s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.796785 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.844494 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.866806 - 1.0s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.909061 - 1.3s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.620509 - 1.2s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.864680 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.925790 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.803280 - 0.9s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.722395 - 1.3s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.881724 - 1.1s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.841204 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.850992 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.777310 - 1.0s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.893442 - 1.1s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.783151 - 1.2s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.900894 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.889632 - 1.1s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.612120 - 1.1s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.876191 - 1.2s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.796785 - 1.3s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.863374 - 1.2s
[CV] c1=1.1335935695692325, c2=0.045601607829839186 ..................
[CV] c1=1.1335935695692325, c2=0.045601607829839186, score=0.855013 - 1.3s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.697995 - 1.1s
[CV] c1=0.05355864292308304, c2=0.0537875036655877 ...................
[CV] c1=0.05355864292308304, c2=0.0537875036655877, score=0.796785 - 1.2s
[CV] c1=0.25945079081541905, c2=0.010397595986328969 .................
[CV] c1=0.25945079081541905, c2=0.010397595986328969, score=0.927980 - 1.2s
[CV] c1=1.3026087883632722, c2=0.0508985293942068 ....................
[CV] c1=1.3026087883632722, c2=0.0508985293942068, score=0.816360 - 1.2s
[CV] c1=0.12284069651421997, c2=0.07728931563717421 ..................
[CV] c1=0.12284069651421997, c2=0.07728931563717421, score=0.903868 - 1.3s
[CV] c1=0.6718735077115858, c2=0.005745367898834753 ..................
[CV] c1=0.6718735077115858, c2=0.005745367898834753, score=0.943246 - 1.1s
[CV] c1=0.16188575490577647, c2=0.010872239640626618 .................
[CV] c1=0.16188575490577647, c2=0.010872239640626618, score=0.927980 - 1.2s
[CV] c1=1.0207079957485827, c2=0.004519504876816081 ..................
[CV] c1=1.0207079957485827, c2=0.004519504876816081, score=0.801130 - 1.2s
[CV] c1=0.008182384829545907, c2=0.06802178300715349 .................
[CV] c1=0.008182384829545907, c2=0.06802178300715349, score=0.854811 - 1.1s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.796785 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.867125 - 1.0s
[CV] c1=1.3592042869129366, c2=0.07476636430730615 ...................
[CV] c1=1.3592042869129366, c2=0.07476636430730615, score=0.844358 - 1.3s
[CV] c1=0.09124769571379378, c2=0.04714194115622477 ..................
[CV] c1=0.09124769571379378, c2=0.04714194115622477, score=0.935724 - 1.2s
[CV] c1=0.8596830833517516, c2=0.025827069173659647 ..................
[CV] c1=0.8596830833517516, c2=0.025827069173659647, score=0.934870 - 1.2s
[CV] c1=0.026900741799377164, c2=0.022970822090078655 ................
[CV] c1=0.026900741799377164, c2=0.022970822090078655, score=0.722395 - 1.2s
[CV] c1=1.28661684935985, c2=0.0006449825527911529 ...................
[CV] c1=1.28661684935985, c2=0.0006449825527911529, score=0.806520 - 1.1s
Training done in: 7.767506s
Saving training model...
Saving training model done in: 0.012868s
*********************************
Prediction done in: 0.030345s