Showing
1 changed file
with
175 additions
and
0 deletions
get_abstracts.py
0 → 100644
1 | +#from pdb import set_trace as st | ||
2 | +from sklearn.cross_validation import train_test_split as splitt | ||
3 | +from sklearn.feature_extraction.text import TfidfVectorizer, HashingVectorizer | ||
4 | +from sklearn.decomposition import TruncatedSVD | ||
5 | +from sklearn.naive_bayes import MultinomialNB | ||
6 | +from sklearn.linear_model import SGDClassifier | ||
7 | +from sklearn.neighbors import KNeighborsClassifier | ||
8 | +from sklearn.neighbors import NearestCentroid | ||
9 | +from sklearn.ensemble import RandomForestClassifier | ||
10 | +from sklearn.svm import LinearSVC | ||
11 | +from sklearn.svm import SVC | ||
12 | +from sklearn import metrics | ||
13 | +from sklearn.ensemble import (ExtraTreesClassifier, RandomForestClassifier, | ||
14 | + AdaBoostClassifier, GradientBoostingClassifier) | ||
15 | +from sklearn.grid_search import GridSearchCV | ||
16 | +import pandas as pd | ||
17 | +from numpy import mean, std | ||
18 | + | ||
19 | +#Classifier = KNeighborsClassifier # 0.6464 | ||
20 | +#Classifier = NearestCentroid # 0.5054 | ||
21 | +#Classifier = RandomForestClassifier # 0.49 | ||
22 | +#Classifier = LinearSVC # 0.5402 | ||
23 | +#Classifier = SGDClassifier # 0.664 | ||
24 | + | ||
25 | +class EstimatorSelectionHelper: | ||
26 | + def __init__(self, models, params): | ||
27 | + if not set(models.keys()).issubset(set(params.keys())): | ||
28 | + missing_params = list(set(models.keys()) - set(params.keys())) | ||
29 | + raise ValueError("Some estimators are missing parameters: %s" % missing_params) | ||
30 | + self.models = models | ||
31 | + self.params = params | ||
32 | + self.keys = models.keys() | ||
33 | + self.grid_searches = {} | ||
34 | + | ||
35 | + def fit(self, X, y, cv=3, n_jobs=1, verbose=1, scoring=None, refit=False): | ||
36 | + for key in self.keys: | ||
37 | + print("Running GridSearchCV for %s." % key) | ||
38 | + model = self.models[key] | ||
39 | + params = self.params[key] | ||
40 | + gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs, | ||
41 | + verbose=verbose, scoring=scoring, refit=refit) | ||
42 | + gs.fit(X,y) | ||
43 | + self.grid_searches[key] = gs | ||
44 | + | ||
45 | + def score_summary(self, sort_by='mean_score'): | ||
46 | + def row(key, scores, params): | ||
47 | + d = { | ||
48 | + 'estimator': key, | ||
49 | + 'min_score': min(scores), | ||
50 | + 'max_score': max(scores), | ||
51 | + 'mean_score': mean(scores), | ||
52 | + 'std_score': std(scores), | ||
53 | + } | ||
54 | + return pd.Series(dict(list(params.items()) + list(d.items()))) | ||
55 | + | ||
56 | + rows = [row(k, gsc.cv_validation_scores, gsc.parameters) | ||
57 | + for k in self.keys | ||
58 | + for gsc in self.grid_searches[k].grid_scores_] | ||
59 | + df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False) | ||
60 | + | ||
61 | + columns = ['estimator', 'min_score', 'mean_score', 'max_score', 'std_score'] | ||
62 | + columns = columns + [c for c in df.columns if c not in columns] | ||
63 | + | ||
64 | + return df[columns] | ||
65 | + | ||
66 | + | ||
67 | +def get_abstracts(file_name, label): | ||
68 | + f = open(file_name) | ||
69 | + extract = {} | ||
70 | + docs = [] | ||
71 | + empties = [] | ||
72 | + lines = f.readlines() | ||
73 | + copyright = False | ||
74 | + | ||
75 | + for i, ln in enumerate(lines): | ||
76 | + if not ln.strip(): | ||
77 | + empties.append(i) | ||
78 | + continue | ||
79 | + elif ' doi: ' in ln: | ||
80 | + for j in range(i, i + 10): | ||
81 | + if not lines[j].strip(): | ||
82 | + title_idx = j + 1 | ||
83 | + break | ||
84 | + continue | ||
85 | + | ||
86 | + elif 'Copyright ' in ln: | ||
87 | + copyright = True | ||
88 | + | ||
89 | + elif 'DOI: ' in ln: | ||
90 | + if 'PMCID: ' in lines[i + 1]: | ||
91 | + extract['pmid'] = int(lines[i + 2].strip().split()[1]) | ||
92 | + elif not 'PMCID: ' in lines[i + 1] and 'PMID: ' in lines[i + 1]: | ||
93 | + extract['pmid'] = int(lines[i + 1].strip().split()[1]) | ||
94 | + | ||
95 | + if copyright: | ||
96 | + get = slice(empties[-3], empties[-2]) | ||
97 | + copyright = False | ||
98 | + else: | ||
99 | + get = slice(empties[-2], empties[-1]) | ||
100 | + | ||
101 | + extract['body'] = " ".join(lines[get]).replace("\n", ' ').replace(" ", ' ') | ||
102 | + title = [] | ||
103 | + for j in range(title_idx, title_idx + 5): | ||
104 | + if lines[j].strip(): | ||
105 | + title.append(lines[j]) | ||
106 | + else: | ||
107 | + break | ||
108 | + extract['title'] = " ".join(title).replace("\n", ' ').replace(" ", ' ') | ||
109 | + extract['topic'] = label | ||
110 | + docs.append(extract) | ||
111 | + empties = [] | ||
112 | + extract = {} | ||
113 | + | ||
114 | + return docs | ||
115 | + | ||
116 | + | ||
117 | +filename="../data/ecoli_abstracts/not_useful_abstracts.txt" | ||
118 | +labels = ['useless', 'useful'] | ||
119 | + | ||
120 | +abstracs = get_abstracts(file_name = filename, label = labels[0]) | ||
121 | + | ||
122 | +filename="../data/ecoli_abstracts/useful_abstracts.txt" | ||
123 | + | ||
124 | +abstracs += get_abstracts(file_name = filename, label = labels[1]) | ||
125 | + | ||
126 | +X = [x['body'] for x in abstracs] | ||
127 | +y = [1 if x['topic'] == 'useful' else 0 for x in abstracs] | ||
128 | + | ||
129 | +models1 = { | ||
130 | + 'ExtraTreesClassifier': ExtraTreesClassifier(), | ||
131 | + 'RandomForestClassifier': RandomForestClassifier(), | ||
132 | + 'AdaBoostClassifier': AdaBoostClassifier(), | ||
133 | + 'GradientBoostingClassifier': GradientBoostingClassifier(), | ||
134 | + 'SVC': SVC() | ||
135 | +} | ||
136 | + | ||
137 | +params1 = { | ||
138 | + 'ExtraTreesClassifier': { 'n_estimators': [16, 32] }, | ||
139 | + 'RandomForestClassifier': { 'n_estimators': [16, 32] }, | ||
140 | + 'AdaBoostClassifier': { 'n_estimators': [16, 32] }, | ||
141 | + 'GradientBoostingClassifier': { 'n_estimators': [16, 32], 'learning_rate': [0.8, 1.0] }, | ||
142 | + 'SVC': [ | ||
143 | + #{'kernel': ['linear'], 'C': [1, 10, 100, 150, 200, 300, 400]}, | ||
144 | + {'kernel': ['rbf'], 'C': [1, 10, 100, 150, 200, 300, 400], 'gamma': [0.001, 0.0001]}, | ||
145 | + {'kernel': ['poly'], 'C': [1, 10, 100, 150, 200, 300, 400], 'degree': [2, 3, 4, 5, 6]}, | ||
146 | + {'kernel': ['sigmoid'], 'C': [1, 10, 100, 150, 200, 300, 400], 'gamma': [0.001, 0.0001]}, | ||
147 | + ] | ||
148 | +} | ||
149 | + | ||
150 | +clf = EstimatorSelectionHelper(models1, params1) | ||
151 | + | ||
152 | +vectorizer = TfidfVectorizer(binary=True) | ||
153 | + #ngram_range=(1, 3) | ||
154 | + #) | ||
155 | +#vectorizer = HashingVectorizer(non_negative=True) | ||
156 | +print(vectorizer) | ||
157 | +#svd = TruncatedSVD(n_components=200, random_state=42, n_iter=20) | ||
158 | +X = vectorizer.fit_transform(X) | ||
159 | +#X = svd.fit_transform(X) | ||
160 | + | ||
161 | +#X_train, X_test, y_train, y_test = splitt(X, y, test_size=0.3, random_state=42) | ||
162 | + | ||
163 | +#from sklearn.feature_selection import chi2, SelectKBest | ||
164 | +#ch2 = SelectKBest(chi2, k=200) | ||
165 | +#X_train = ch2.fit_transform(X_train, y_train) | ||
166 | +#X_test = ch2.transform(X_test) | ||
167 | + | ||
168 | +#clf = MultinomialNB(alpha=.01) | ||
169 | +#clf = Classifier(n_jobs=-1, n_iter=100) | ||
170 | +#st() | ||
171 | +clf.fit(X, y, scoring='f1', n_jobs=-1) | ||
172 | + | ||
173 | +#pred = clf.predict(X_test) | ||
174 | +#print(metrics.f1_score(y_test, pred, average='macro')) | ||
175 | +print(clf.score_summary(sort_by='min_score')) |
-
Please register or login to post a comment