classify_abstracts.py
6.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#from pdb import set_trace as st
from sklearn.cross_validation import train_test_split as splitt
from sklearn.feature_extraction.text import TfidfVectorizer, HashingVectorizer
from sklearn.decomposition import TruncatedSVD
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.svm import SVC
from sklearn import metrics
from sklearn.ensemble import (ExtraTreesClassifier, RandomForestClassifier,
AdaBoostClassifier, GradientBoostingClassifier)
from sklearn.grid_search import GridSearchCV
from sklearn.externals import joblib
import pandas as pd
from numpy import mean, std
class EstimatorSelectionHelper:
"http://www.codiply.com/blog/hyperparameter-grid-search-across-multiple-models-in-scikit-learn/"
def __init__(self, models, params):
if not set(models.keys()).issubset(set(params.keys())):
missing_params = list(set(models.keys()) - set(params.keys()))
raise ValueError("Some estimators are missing parameters: %s" % missing_params)
self.models = models
self.params = params
self.keys = models.keys()
self.grid_searches = {}
self.best_estimator = {}
def fit(self, X, y, cv=3, n_jobs=1, verbose=1, scoring=None, refit=False):
for key in self.keys:
print("Running GridSearchCV for %s." % key)
model = self.models[key]
params = self.params[key]
gs = GridSearchCV(model, params, cv=cv, n_jobs=n_jobs,
verbose=verbose, scoring=scoring, refit=refit)
gs.fit(X,y)
self.grid_searches[key] = gs
def score_summary(self, sort_by='mean_score'):
def row(key, scores, params, model):
d = {
'estimator': key,
'min_score': min(scores),
'max_score': max(scores),
'mean_score': mean(scores),
'std_score': std(scores),
'model': model
}
return pd.Series(dict(list(params.items()) + list(d.items())))
rows = [row(k, gsc.cv_validation_scores, gsc.parameters, m)
for k in self.keys
for gsc, m in zip(self.grid_searches[k].grid_scores_, self.grid_searches[k].best_estimator_)]
df = pd.concat(rows, axis=1).T.sort_values([sort_by], ascending=False)
columns = ['estimator', 'min_score', 'mean_score', 'max_score', 'std_score']
columns = columns + [c for c in df.columns if (c not in columns and c != 'model')]
self.best_estimator_ = df['model'][0]
return df[columns]
def get_abstracts(file_name, label):
f = open(file_name)
extract = {}
docs = []
empties = []
lines = f.readlines()
cpright = False
for i, ln in enumerate(lines):
if not ln.strip():
empties.append(i)
continue
elif ' doi: ' in ln:
for j in range(i, i + 10):
if not lines[j].strip():
title_idx = j + 1
break
continue
elif 'cpright ' in ln:
cpright = True
elif 'DOI: ' in ln:
if 'PMCID: ' in lines[i + 1]:
extract['pmid'] = int(lines[i + 2].strip().split()[1])
elif not 'PMCID: ' in lines[i + 1] and 'PMID: ' in lines[i + 1]:
extract['pmid'] = int(lines[i + 1].strip().split()[1])
if cpright:
get = slice(empties[-3], empties[-2])
cpright = False
else:
get = slice(empties[-2], empties[-1])
extract['body'] = " ".join(lines[get]).replace("\n", ' ').replace(" ", ' ')
title = []
for j in range(title_idx, title_idx + 5):
if lines[j].strip():
title.append(lines[j])
else:
break
extract['title'] = " ".join(title).replace("\n", ' ').replace(" ", ' ')
extract['topic'] = label
docs.append(extract)
empties = []
extract = {}
return docs
filename = "data/ecoli_abstracts/not_useful_abstracts.txt"
labels = ['useless', 'useful']
abstracs = get_abstracts(file_name=filename, label=labels[0])
filename = "data/ecoli_abstracts/useful_abstracts.txt"
abstracs += get_abstracts(file_name=filename, label=labels[1])
X = [x['body'] for x in abstracs]
y = [1 if x['topic'] == 'useful' else 0 for x in abstracs]
models1 = {
'ExtraTreesClassifier': ExtraTreesClassifier(),
'RandomForestClassifier': RandomForestClassifier(),
'AdaBoostClassifier': AdaBoostClassifier(),
'GradientBoostingClassifier': GradientBoostingClassifier(),
'SVC': SVC()
}
params1 = {
'ExtraTreesClassifier': {'n_estimators': [16, 32]},
'RandomForestClassifier': {'n_estimators': [16, 32]},
'AdaBoostClassifier': {'n_estimators': [16, 32]},
'GradientBoostingClassifier': {'n_estimators': [16, 32],
'learning_rate': [0.8, 1.0]},
'SVC': [
{'kernel': ['rbf'], 'C': [1, 10, 100, 150, 200, 300, 350, 400],
'gamma': [0.1, 0.01, 0.001, 0.0001, 0.00001]},
{'kernel': ['poly'], 'C': [1, 10, 100, 150, 200, 300, 350, 400],
'degree': [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 23, 26],
'coef0': [0.1, 0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]}
]
}
clf = EstimatorSelectionHelper(models1, params1)
vectorizer = TfidfVectorizer(binary=True)
#ngram_range=(1, 3)
#)
#vectorizer = HashingVectorizer(non_negative=True)
print(vectorizer)
#svd = TruncatedSVD(n_components=200, random_state=42, n_iter=20)
X = vectorizer.fit_transform(X)
#X = svd.fit_transform(X)
#X_train, X_test, y_train, y_test = splitt(X, y, test_size=0.3, random_state=42)
#from sklearn.feature_selection import chi2, SelectKBest
#ch2 = SelectKBest(chi2, k=200)
#X_train = ch2.fit_transform(X_train, y_train)
#X_test = ch2.transform(X_test)
#clf = MultinomialNB(alpha=.01)
#clf = Classifier(n_jobs=-1, n_iter=100)
#st()
clf.fit(X, y, scoring='f1', n_jobs=-1)
#pred = clf.predict(X_test)
#print(metrics.f1_score(y_test, pred, average='macro'))
print(clf.score_summary(sort_by='min_score'))
joblib.dump(clf.best_estimator_, 'model/svm_model.pkl')
joblib.dump(vectorizer, 'model/tifidf_model.pkl')