24743342.txt
33 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
Genome-Wide Profiling of Yeast DNA:RNA Hybrid Prone
Abstract
Funding : PH is a senior fellow of the Canadian Institute For Advanced Research ( CIFAR ) and acknowledges support from the National Institutes of Health ( operating grant R01 : 4R01CA158162 ) and Canadian Institutes of Health Research ( CIHR operating grant MOP-38096 ) .
MSK is a Senior Fellow of CIFAR and is funded by CIHR operating grant MOP-119383 and MOP-119372 .
YAC acknowledges scholarship support from the Natural Sciences and Engineering Research Council of Canada , as well as the Roman M. Babicki Fellowship in Medical Research .
MJA and PYTL were supported by Frederick Banting and Charles Best Canada graduate scholarships from CIHR .
PCS was a fellow of the Terry Fox Foundation ( # 700044 ) , the Michael Smith Foundation for Health Research and is currently supported by the Cancer Research Society .
The funders had no role in study design , data collection and analysis , decision to publish , or preparation of the manuscript .
Introduction
Elevated DNA : RNA hybrid formation due to defects in RNA processing pathways leads to genome instability and replication stress across species [ 1 -- 7 ] .
R loops threaten genome stability and often form under abnormal conditions where nascent mRNA is improperly processed or RNA half-life is increased , resulting in RNA that can hybridize with template DNA , displacing the nontranscribed DNA strand [ 8 ] .
A recent study also found that hybrid formation can occur in trans via Rad51-mediated DNA-RNA strand exchange [ 9 ] .
Persistent R loops pose a major threat to genome stability through two mechanisms .
First , the exposed nontranscribed strand is susceptible to endogenous DNA damage due to the increased exposure of chemically reactive groups .
The second , more widespread mechanism , identified in Escherichia coli , Saccharomyces cerevisiae , Caenorhabditis elegans and human cells , involves the R loops and associated stalled transcription complexes , which block DNA replication fork progression [ 3,4,8,10,11 ] .
R loop-mediated instability is an area of great interest primarily because genome instability is considered an enabling characteristic of tumor formation [ 12 ] .
Moreover , mutations in RNA splicing / processing factors are frequently found in human cancer , heritable diseases like Aicardi-Goutieres syndrome , and a degenerative ataxia associated with Senataxin mutations [ 13 -- 17 ] .
To avoid the deleterious effects of R loops , cells express enzymes for the removal of abnormally formed DNA : RNA hybrids .
In S. cerevisiae , RNH1 and RNH201 , each encoding RNase H are responsible for one of the best characterized mechanisms for reducing R loop formation by enzymatically degrading the RNA in DNA : RNA hybrids [ 8 ] .
Another extensively studied anti-hybrid factor is the THO/TREX complex which functions to suppress hybrid formation at the level of transcription termination and mRNA packaging [ 4,11,18,19 ] .
In addition , the Senataxin helicase , yeast Sen1 , plays an important role in facilitating replication fork progress through transcribed regions and unwinding RNA in hybrids to mitigate R loop formation and RNA polymerase II transcription-associated genome instability [ 5,20 ] .
Several additional anti-hybrid mechanisms have also been identified including topoisomerases and other RNA processing factors [ 2,6,7,9,21 -- 23 ] .
To add to the complexity of DNA : RNA hybrid management in the cell , hybrids also occur naturally and have important biological functions [ 24 ] .
In human cells , R loop formation facilitates immunoglobulin class switching , protects against DNA methylation at CpG island promoters and plays a key role in pause site-dependent transcription termination [ 25 -- 28 ] .
Transcription of telomeres by RNA polymerase II also produces telomeric repeatcontaining RNAs ( TERRA ) , which associate with telomeres and inhibit telomere elongation in a DNA : RNA hybrid-dependent fashion [ 29 -- 31 ] .
Noncoding ( nc ) RNA such as antisense transcripts , perform a regulatory role in the expression of sense transcripts that may involve R loops [ 32 ] .
The proposed mechanisms of antisense transcription regulation are not clearly understood and involve different modes of action specific to each locus .
Current models include chromatin modification resulting from antisense-associated transcription , antisense transcription modulation of transcription regulators , collision of sense and antisense transcription machineries and antisense transcripts expressed in trans interacting with the promoter for sense transcription [ 32 -- 40 ] .
More recently , studies in Arabidopsis thaliana found an antisense transcript that forms R loops , which can be differentially stabilized to modulate gene regulation [ 41 ] .
Similarly , in mouse cells the stabilization of an R loop was shown to inhibit antisense transcription [ 42 ] .
Here we describe , for the first time , a genome-wide profile of DNA : RNA hybrid prone loci in S. cerevisiae by DNA : RNA immunoprecipitation followed by hybridization on tiling micro-arrays ( DRIP-chip ) .
We found that DNA : RNA hybrids occurred at highly transcribed regions in wild type cells , including some identified in previous studies .
Remarkably , we observed that DNA : RNA hybrids were significantly associated with genes that have corresponding antisense transcripts , suggesting a role for hybrid formation at these loci in gene regulation .
Consistently , we found that genes whose expression was altered by overexpression of RNase H were also significantly associated with antisense transcripts .
A small-scale cytological screen found that diverse
RNA processing mutants had increased hybrid formation and additional DRIP-chip studies revealed specific hybrid-site biases in the RNase H , Sen1 and THO complex subunit Hpr1 mutants .
These genome-wide analyses enhance our understanding of DNA : RNA hybrid-forming regions in vivo , highlight the role of cellular RNA processing activities in suppressing hybrid formation , and implicate DNA : RNA hybrids in control of a subset of antisense regulated loci .
Results
The genomic distribution of DNA:RNA hybrids
DNA : RNA hybrids have been previously immunoprecipitated at specific genomic sites such as rDNA , selected endogenous loci , and reporter constructs [ 2,5 ] .
Subsequently , DRIP coupled with deep sequencing in human cells has demonstrated the prevalence of R loops at CpG island promoters with high GC skew [ 26 ] .
To investigate the global profile of DNA : RNA hybrid prone loci in a tractable model , we performed genome-wide DRIP-chip analysis of wild type S. cerevisiae ( ArrayExpress E-MTAB-2388 ) using the S9 .6 monoclonal antibody which specifically binds DNA : RNA hybrids , as characterized previously [ 43,44 ] .
DRIP-chip profiles were generated in duplicate ( spearman 's r = 0.78 when comparing each of over 2 million probes after normalization and data smoothing , Supplementary Figure S1 ) and normalized to a no antibody control .
Overall , our DRIP-chip profiles identified several previously reported DNA : RNA hybrid prone sites including the rDNA locus and telomeric repeat regions ( Figure 1 , Supplementary Tables S1 , S2 ) [ 2,29 -- 31 ] .
DNA : RNA hybrids were also observed at 1217 open reading frames ( ORFs ) ( containing greater than 50 % of probes above the threshold of 1.5 and found in both wild type replicates ) ( Supplementary Table S3 ) .
These were generally shorter in length than average ( p = 4.29 e ) , highly transcribed 258 26 ( Wilcoxon rank sum test p = 2.21 e ) , and had higher GC content 250 ( p = 2.52 e ) ( Figure 2A , 2B and 2C , Supplementary Figure S2 ) .
Importantly , despite the correlation between DNA : RNA hybrid association and transcriptional frequency , the wild type DRIP-chip profiles compared to the localization profile of the RNA polymerase II subunit Rpb3 revealed very low correlation ( r = 0.0097 ; [ 45 ] ) .
This suggests that the DRIP-chip method was not unduly biased towards the short DNA : RNA hybrids that could theoretically have been captured within active transcription bubbles .
Importantly , because genes with high GC content also have high transcriptional frequencies ( Supplementary Figure S3 ) , it is not clear from our findings whether GC content or transcriptional frequency contributed more to DNA : RNA hybrid forming potential .
Furthermore , we observe that DNA : RNA hybrid prone loci do not encode for mRNA transcripts with particularly long half-lives ( Supplementary Figure S2D ) , suggesting that the act of transcription is vital to DNA : RNA hybrid formation and supporting the notion of co-transcriptional hybrid formation as the major source of endogenous DNA : RNA hybrids .
Our data also revealed DNA : RNA hybrids highly associated with Ty1 and Ty2 subclasses of retrotransposons ( Figure 2E , Supplementary Table S4 ) .
Consistent with our findings at ORFs , the levels of DNA : RNA hybrids correspond well with the known levels of expression of these elements .
In general , Ty1 which constitutes one of the most abundant transcripts in the cell has the highest levels of DNA : RNA hybrids .
Ty3 and Ty4 that are only slightly expressed have much lower levels of hybrids , and the lone Ty5 retrotransposon which is transcriptionally silent is not enriched for DNA : RNA hybrids ( Figure 2E ) ( [ 46 -- 48 ] ) .
In contrast to the trends observed with ORFs , GC content in retrotransposons is not highly correlated with the levels of expression , suggesting that expression is the main contributor to
DNA : RNA hybrid formation .
Specifically , Ty3 retrotransposons have the highest GC content but have only modest levels of expression and DNA : RNA hybrids .
DNA : RNA hybrids are significantly correlated with genes associated with antisense transcripts
Certain DNA : RNA hybrid enriched regions identified by our DRIP-chip analysis such as rDNA and retrotransposons are associated with antisense transcripts [ 49,50 ] .
Therefore , we checked if this was a common feature of DNA : RNA prone sites by comparing our list of DNA : RNA prone loci to a list of antisense-associated genes ( [ 51 ] ) .
Because the expression of antisense-associated transcripts may be highly dependent on environmental conditions , we based our analysis on a list of transcripts identified in S288c yeast grown to mid-log phase in rich media which most closely mirrors the growth conditions of our cultures analyzed by DRIP-chip ( [ 51 ] ) .
DNA : RNA hybrid enriched genes significantly overlapped with antisense-associ-ated genes , suggesting that DNA : RNA hybrids may play a role in antisense transcript-mediated regulation of gene expression ( Fisher 's exact test p = 1.03 e ) ( Figure 3A , 3B and 3C , 212 Supplementary Table S5 ) .
RNase H overexpression reduces detectable levels of DNA : RNA hybrids in cytological screens and suppresses genomic instability associated with R loop formation presumably through the degradation of DNA : RNA hybrids [ 7,52,53 ] .
To test for a potential role of DNA : RNA hybrids in antisense-mediated gene regulation , we performed gene expression microarray analysis of an RNase H overexpression strain compared to an empty vector control ( GEO GSE46652 ) .
This identified genes that had increased mRNA levels ( upregulated n = 212 ) or decreased mRNA levels ( downregulated n = 88 ) as a result of RNase H overexpression .
A significant portion of the genes with increased mRNA levels were antisense-associated ( Fisher exact test p = 2.9 e ) 27 ( Figure 3D , Supplementary Table S5 ) and tended to have high GC content , similar to DNA : RNA hybrid enriched genes in wild type ( Supplementary Figure S4 ) .
However , the genes with increased mRNA levels under RNase H overexpression and the antisense-associated genes enriched for DNA : RNA hybrids in our DRIP experiment both tended towards lower transcriptional frequencies ( Figure 3E ) .
These findings suggest that antisense-associated DNA : RNA hybrids moderate the levels of gene expression .
Indeed , genes that were both modulated by RNase H overexpression and enriched for DNA : RNA hybrids were all found to be antisense-associated ( Figure 3F ) .
The mechanism underlying altered gene expression in cells overexpressing RNase H remains unclear .
While the association with antisense transcription is compelling , alternative models exist .
One possibility is that the stress of RNase H overexpression triggers gene expression programs that coincidentally are antisense regulated .
We analyzed gene ontology ( GO ) terms enriched among genes whose expression was changed by RNase H overexpression .
Consistent with previous work , genes for iron uptake and incorporation were strongly activated by RNase H overexpression ( p = 2.21 e ) ( Figure 4A , Supplementary 212 Table S6 ) and several of these iron transport genes ( i.e. FRE4 , FRE2 , FRE3 , FET3 , FET4 ) are antisense-associated ( [ 51,54 ] ) suggesting that overexpression of RNase H activates transcription of these genes by perturbing antisense-mediated regulation .
Alternatively , changes in RNase H levels may increase the cellular iron requirements since sensitivity to low iron concentration is associated with DNA damage and repair [ 55 ] .
To test this alternative hypothesis , we tested the RNase H deletion and sen1-1 mutants for sensitivity to low iron conditions compared to a fet3D positive control ( Figure 4B ) .
The sen1-1 mutant , RNase H depletion or overexpression did not induce sensitivity to low iron ruling out the possibility that the transcriptional response in cells overexpressing RNase H was a result of cellular iron requirement .
Collectively , our DRIP-chip and microarray analysis suggest that DNA : RNA hybrids may be an important player in antisensemediated gene regulation .
Cytological profiling of RNA processing mutants for R loop formation
Transcription-coupled DNA : RNA hybrids have been shown to accumulate in a diverse set of transcription and RNA processing mutants involved in a wide range of transcription related processes ( Table 1 ) .
To gain a broader understanding of factors involved in R loop formation , we performed a cytological screen of RNA processing , transcription and chromatin modification mutants for
DNA : RNA hybrids using the S9 .6 antibody .
Importantly , previous work in our lab has shown that all of the mutants screened exhibit chromosome instability ( CIN ) , which would be consistent with increased hybrid formation [ 53 ] .
Significantly elevated hybrid levels were found in 22 of the 40 mutants tested compared to wild type , including a SUB2 mutant which has been previously linked to R loop formation ( Figure 5 , [ 4 ] ) .
We also assayed some of the well-characterized R-loop forming mutants , RNase H , Sen1 and Hpr1 , as positive controls for elevated DNA : RNA hybrid levels ( Figure 5 ) .
In our screen , we detected hybrids in mutants affecting several pathways linked to DNA : RNA hybrid formation such as transcription , nuclear export and the exosome ( Figure 5 , Table 1 ) .
Consistent with findings in metazoan cells , we also observed hybrid formation in some splicing mutants ( Figure 5 , Table 1 ; [ 56 ] ) .
Several rRNA processing mutants were enriched for DNA : RNA hybrids ( 7 out of the 22 positive hits ) , likely due to DNA : RNA hybrid accumulation at rDNA genes , a sensitized hybrid formation site ( Figure 1 ; [ 2 ] ) .
It is possible that , as seen in mRNA cleavage and polyadenylation mutants , DNA : RNA hybrid formation may contribute to their CIN phenotypes [ 6 ] .
Currently , there are 52 yeast genes whose disruptions have been found to lead to DNA : RNA hybrid accumulation , 21 of which were newly identified by our screen ( Table 1 ) .
The success of this small-scale screen suggests that most RNA processing pathways suppress hybrid formation to some degree and that many DNA : RNA hybrid forming mutants remain undiscovered .
DRIP-chip profiling of R loop forming mutants
To better understand the mechanism by which cells regulate DNA : RNA hybrids , we performed DRIP-chip analysis of rnh1Drnh201D , hpr1D , and sen1-1 mutants in order to determine if these contribute differentially to the DNA : RNA hybrid genomic profile .
The rnh1Drnh201D , hpr1D , and sen1-1 mutants are particularly interesting because they have well established roles in the regulation of transcription dependent DNA : RNA hybrid formation .
Our DRIP-chip profiles revealed that , similar to wild type profiles , the mutant profiles were enriched for DNA : RNA hybrids at rDNA , telomeres , and retrotransposons ( Figure 6 , Supplementary Tables S1 , S2 , S3 ) .
The rnh1Drnh201D , hpr1D , and sen1-1 mutants also exhibited DNA : RNA hybrid enrichment in 1206 , 1490 and 1424 ORFs respectively compared to the 1217 DNA : RNA hybrid enriched ORFs identified in wild type ( Supplementary Table S4 ) .
Interestingly , in addition to the similarities described above , our profiles also identified differential effects of the mutants on the levels of DNA : RNA hybrids .
In particular , we observed that deletion of HPR1 resulted in higher levels of DNA : RNA hybrids along the length of most ORFs with a preference for longer genes compared to wild type ( Figure 7A , 7B and 7C ) .
This observation is consistent with Hpr1 's role in bridging transcription elongation to mRNA export and its localization at actively transcribed genes ( [ 4,57 -- 59 ] ) .
In contrast , mutating SEN1 resulted in higher levels of DNA : RNA hybrids at shorter genes ( Figure 7A and 7B ) , which is consistent with Sen1 's role in transcription termination particularly for short proteincoding genes ( [ 5,60,61 ] ) .
The rnh1Drnh201D mutant revealed higher levels of DNA : RNA hybrids at highly transcribed and longer genes ( Figure 7A and 7B ) which is supported by a wealth of evidence of RNase H 's role in suppressing R loops in long genes to prevent collisions between transcription and replication
Further inspection of our profiles also revealed that rnh1Drnh201D and sen1-1 mutants but not the hpr1D mutant had increased DNA : RNA hybrids at tRNA genes ( two tailed unpaired Wilcox test p = 1.56 e in the rnh1Drnh201D mutant and 219 1.68 e in the sen1-1 mutant ) ( Figure 8A , 8B and 8C , 215 Supplementary Table S7 ) and this was confirmed by DRIP-quantitative PCR ( qPCR ) of two tRNA genes in wild type and rnh1Drnh201D ( Supplementary Figure S5 ) .
Because tRNAs are transcribed by RNA polymerase III , this observation indicates that Hpr1 is primarily involved in the regulation of RNA polymerase II specific DNA : RNA hybrids while RNase H and Sen1 have roles in a wider range of transcripts .
Mutation of SEN1 also led to increased levels DNA : RNA hybrids at snoRNA ( two tailed unpaired Wilcox test p = 1.81 e ) ( Figure 8D , 8E and 8F , 26 Supplementary Table S8 ) consistent with its role in 39 end processing of snoRNAs ( [ 63 ] ) .
Discussion
The genomic profile of DNA:RNA hybrids
Identifying the landscape of genomic loci predisposed to DNA : RNA hybrids is of fundamental importance to delineating mechanisms of hybrid formation and the contributions of various cellular pathways .
Although our profiles depend on the specificity of the anti-DNA : RNA hybrid S9 .6 monoclonal antibody , this aspect has been well characterized [ 44 ] and several of our observations are consistent with what has been reported in the literature .
Locus specific tests showed that DNA : RNA hybrids occur more frequently at genes with high transcriptional frequency and GC content [ 4,5,18 ] .
Moreover , in rnh201D cells , there is an inverse relationship between GC content and gene expression levels , suggesting that DNA : RNA hybrids accumulate at regions of high GC content and block transcription in the absence of RNase H [ 64 ] .
Our work extends the knowledge of DNA : RNA hybrids from a few locus-specific observations to show that , in wild type , there are potentially hundreds of hybrid prone genes that tend to be shorter in length , frequently transcribed and high in GC content [ 2,4,56 ] .
The latter is consistent with recent studies in human cells that demonstrated that genomic regions with high GC skew are prone to R loop formation , which plays a regulatory role in DNA methylation [ 26,27 ] .
However , while we determined the relationship between GC content and DNA : RNA hybrid formation , we were unable to do the same analysis for GC skew , likely due to the low level of GC skew and lack of DNA methylation in Saccharomyces .
This is unsurprising since the best characterized functional element associated with GC skew , CpG island promoters [ 26,27 ] , are not found in yeast .
Importantly , our findings at retrotransposons support the notion that expression levels and not GC content contribute more to DNA : RNA hybrid forming potential .
Additionally , DRIP-chip analysis of wild type cells identified hybrid enrichment at rDNA , retrotransposons , and telomeric regions .
Along with previous studies , our DRIP-chip analysis confirms that rDNA is a hybrid prone genomic site and suggests that many factors of rRNA processing and ribosome assembly suppress potentially damaging rDNA : rRNA hybrid formation [ 2,7 ] .
The presence of TERRA-DNA hybrids at telomeres is supported by our observation of significant hybrid signal at telomeric repeat regions across all DRIP-chip experiments .
Antisense association of DNA:RNA hybrids
The DRIP-chip dataset is a resource for future studies seeking to elucidate the localization of DNA : RNA hybrids across antisense-associated regions and the impact of DNA : RNA hybrid removal on genome-wide transcription .
We observed that genes associated with antisense transcripts were significantly enriched for
DNA : RNA hybrids and modulated at the transcript level by RNase H overexpression .
Antisense regulation has been reported at mammalian rDNA and yeast Ty1 retrotransposons , loci that were also enriched for DNA : RNA hybrids in our DRIP-chip [ 49,50 ] .
The role of DNA : RNA hybrids and RNase H in antisense regulation is currently unclear .
However , there are several non-exclusive models of antisense gene regulation .
One model proposes that the physical presence of the antisense transcripts is crucial to antisense gene regulation .
For instance , trans-acting antisense transcripts have been shown to control Ty1 retrotransposon transcription , reverse transcription and retrotransposition [ 65 ] .
Another study has further shown that trans-acting antisense transcripts that only overlap with the sense strand promoter can block sense transcription , potentially by hybridizing with the nontemplate DNA strand [ 33 ] .
These suggest that antisense transcription in cis is not necessary as long as the antisense transcript is present .
It is possible that DNA : RNA hybrids may be formed by the antisense or the sense transcript with genomic DNA .
Moreover , DNA : RNA hybrids may play a functional role in antisense transcription regulation as shown by antisense-associated genes both enriched for DNA : RNA hybrids and affected transcriptionally by RNase H overexpression .
Experiments comparing the ratio of antisense versus sense transcripts and determining the amount of DNA : RNA hybrid formation by either transcript under conditions known to regulate the particular gene will further elucidate the role of RNase H and DNA : RNA hybrids in antisense regulation .
DRIP-chip analysis of hybrid-resolving mutants
Our investigation of mutant-specific DNA : RNA hybrid formation sites is consistent with the existing literature on Hpr1 , Sen1 and RNase H. Significantly , the hpr1D and rnh1Drnh201D mutants exhibited increased DNA : RNA hybrid levels along the length of long genes , while the sen1-1 mutant exhibited increased
DNA : RNA hybrid levels along the length of short genes ( Figure 7A ) .
This coheres with Hpr1 's function in transcription elongation and mRNA export , and RNase H 's role in preventing transcription apparatus and replication fork collisions , which carry greater consequence for long genes ( [ 4,57 -- 59,62 ] ) .
In contrast , Sen1 is particularly important for transcription termination at short genes ( [ 61 ] ) .
In addition , the RNase H deletion and sen1-1 mutants had increased hybrids at tRNA genes , suggesting that they are both required to prevent tRNA : DNA hybrid accumulation .
Interestingly , a recent study found that the mRNA levels of genes encoding RNA polymerase III and proteins that modify tRNA are increased in an rnh1Drnh201D mutant [ 64 ] , which may be in response to a lack of properly processed tRNA transcripts .
The finding that both tRNA and snoRNA genes were enriched for hybrids in sen1-1 highlights the role of Sen1 in RNA polymerase I , II and III transcription termination and transcript maturation [ 60,63,66 ] .
More broadly , our data and the literature support the notion that transcripts from RNA polymerases I , II and III can be subject to DNA : RNA hybrid formation especially in RNA processing mutant backgrounds .
Perspective
Factors regulating ectopic , genome destabilizing DNA : RNA hybrids are best characterized in yeast , although less is known about the functions of native R loop structures .
The genome-wide maps of DNA : RNA hybrids presented here recapitulate the known sites of hybrid formation but also add important new insights to potential functions of R loops .
Most importantly , we demonstrate the usefulness of DRIP profiling for detecting biologically meaningful differences in mutant strains .
Therefore , DRIP profiling of yeast genomes in various mutant backgrounds will be key to understanding the causes and consequences of inappropriate R loop formation and how these are modulated by other cellular pathways .
Methods
Strains and plasmids
All strains are listed in Supplementary Table S9 .
For RNase H overexpression experiments , recombinant human RNase H1 was expressed from plasmid p425-GPD-RNase H1 ( 2m , LEU2 , GPDpr-RNase H1 ) and compared to an empty control plasmid p425-GPD ( 2m , LEU2 , GPDpr ) [ 7 ] .
DRIP-chip and qPCR
Briefly , cells were grown overnight , diluted to 0.15 OD600 and grown to 0.7 OD600 .
Crosslinking was done with 1 % formaldehyde for 20 minutes .
Chromatin was purified as described previously [ 67 ] and sonicated to yield approximately 500 bp fragments .
40 mg of the anti-DNA : RNA hybrid monoclonal mouse antibody S9 .6 ( gift from Stephen Leppla ) was coupled to 60 mL of protein A magnetic beads ( Invitrogen ) .
For ChIP-qPCR , crosslinking reversal and DNA purification were followed by qPCR analysis of the immunoprecipitated and input DNA .
DNA was analyzed using a Rotor-Gene 600 ( Corbett Research ) and PerfeCTa SYBR green FastMix ( Quanta Biosciences ) .
Samples were analyzed in triplicate on three independent DRIP samples for wild type and rnh1Drnh201D .
Primers are listed in Supplementary Table S11 .
For DRIP-chip , precipitated DNA was amplified via two rounds of T7 RNA polymerase amplification ( [ 68 ] ) , biotin labeled and hybridized to Affymetrix 1.0 R S. cerevisiae microarrays .
Samples were normalized to a no antibody control sample ( mock ) using the rMAT software and relative occupancy scores were calculated for all probes using a 300 bp sliding window .
All profiles were generated in duplicate and replicates were quantile normalized and averaged .
Spearman correlation scores between replicates are listed in Supplementary Table S10 .
Coordinates of enriched regions are available in Dataset S1/S2/S3 / S4/S5/S6 / S7 / S8 .
DRIP-chip data is available at ArrayExpress E-MTAB-2388 .
DRIP-chip analysis
Enriched features had at least 50 % of the probes contained in the feature above the threshold of 1.5 .
Only features enriched in both replicates were reported .
Transcriptional frequency [ 69 ] , GC content ( [ 70 ] ) and gene length were compared using the Wilcoxon rank sum test .
Antisense association was analyzed by the Fisher 's exact test using R. Statistical analysis of genomic feature enrichment was performed using a Monte Carlo simulation , which randomly generates start positions for the particular set of features and calculates the proportion of that feature that would be enriched in a given DRIP-chip profile if the feature were distributed at random [ 67 ] .
500 simulations were run per feature for each DRIP-chip replicate to obtain mean and standard deviation values .
These values were used to calculate the cumulative probability ( P ) on a normal distribution of seeing a score lower than the observed value by chance .
DRIP-chip visualization
CHROMATRA plots were generated as described previously ( [ 71 ] ) .
Relative occupancy scores for each transcript were binned into segments of 150 bp .
Transcripts were sorted by their length , transcriptional frequency or GC content and aligned by their Transcription Start Sites ( TSS ) .
For transcriptional frequency transcripts were grouped into five classes according to their transcriptional frequency described by Holstege et al 1998 .
For GC content transcripts were grouped into four classes according to their GC content obtained from BioMart ( [ 70 ] ) .
Average gene , tRNA or snoRNA profiles were generated by averaging all the probes that were encompassed by the features of interest .
For averaging ORFs , corresponding probes were split into 40 bins while 1500 bp of UTRs and their probes were split into 20 bins .
For smaller features like tRNAs and snoRNAs corresponding probes were split into only 3 bins .
Average enrichment scores were calculated using in house scripts that average the score of all the
Gene expression microarray
Gene expression microarray data is available at GEO GSE46652 .
Strains harboring the RNase H1 over-expression plasmid or empty vector were grown in SC-Leucine at 30uC .
All profiles were generated in duplicate .
Total RNA was isolated from 1 OD600 of yeast cells using a RiboPure Yeast kit ( A&B Applied Biosystems ) , amplified , labeled , fragmented using a Message-Amp III RNA Amplification Kit ( A&B Applied Biosystems ) and hybridized to a GeneChIP Yeast Genome 2.0 microarray using the GeneChip Hybridization , Wash , and Stain Kit ( Affymetrix ) .
Arrays were scanned by the Gene Chip Scanner 3000 7G and expression data was extracted using Expression Console Software ( Affymetrix ) with the MAS5 .0 statistical algorithm .
All arrays were scaled to a median target intensity of 500 .
A minimum cut off of pvalue of 0.05 and signal strength of 100 across all samples were implemented and only transcripts that had over a 2-fold change in the RNase H over-expression strain compared to wild type were considered significant .
The correlation between duplicate biological samples was : control ( r = 0.9955 ) , RNase H over-expression ( r = 0.9719 ) .
For statistical analysis , GC content , transcription frequencies and antisense association were analyzed as for DRIP ¬
Yeast chromosome spreads
Cells were grown to mid-log phase in YEPD rich media at 30uC and washed in spheroplasting solution ( 1.2 M sorbitol , 0.1 M potassium phosphate , 0.5 M MgCl2 , pH 7 ) and digested in spheroplasting solution with 10 mM DTT and 150 mg/mL Zymolase 20T at 37uC for 20 minutes similar to previously described ( [ 72 ] ) .
The digestion was halted by addition of ice-cold stop solution ( 0.1 M MES , 1 M sorbital , 1 mM EDTA , 0.5 mM MgCl2 , pH 6.4 ) and spheroplasts were lysed with 1 % vol/vol Lipsol and fixed on slides using 4 % wt/vol paraformal-dehyde/3 .4 % wt/vol sucrose ( [ 73 ] ) .
Chromosome spread slides were incubated with the mouse monoclonal antibody S9 .6 ( 1 mg/mL in blocking buffer of 5 % BSA , 0.2 % milk and 16 PBS ) .
The slides were further incubated with a secondary Cy3-conjugated goat anti-mouse antibody ( Jackson Laboratories , # 115-165-003 , diluted 1:1000 in blocking buffer ) .
For each replicate , at least 100 nuclei were visualized and manually counted to obtain the fraction with detectable DNA : RNA hybrids .
Each mutant was assayed in triplicate .
Mutants were compared to wild type by the Fisher 's exact test .
To correct for multiple hypothesis testing , we implemented a cut off of p ,0.01 divided by the total number of mutants compared to wild type , meaning mutants with p ,0.00024 were considered significantly different from wild type .
BPS sensitivity assay
10-fold serial dilutions of each strain was spotted on 90 mM BPS plates with FeSO4 concentrations of 0 , 2.5 , 20 or 100 mM and grown at 30uC for 3 days [ 55 ] .
A summary of this paper was presented at the 26 International th Conference on Yeast Genetics and Molecular Biology , August 2013 [ 74 ] .
Supporting Information
Dataset S1 Wild type replicate 1 enriched region coordinates .
( XLSX )
Dataset S2 Wild type replicate 2 enriched region coordinates .
( XLSX )
Acknowledgments
The RNase H1 plasmid and anti-DNA : RNA hybrid antibody S9 .6 were kind gifts from Doug Koshland and Stephen Leppla respectively .
We thank Alice Wang and Grace Leung for their assistance with the DRIP-chip protocol and Nigel O'Neil for helpful discussions .
We thank Gian Luca Negri for helpful discussions of the chip-on-chip data analysis and for providing scripts .
Author Contributions
Conceived and designed the experiments : YAC MJA AH PCS .
Performed the experiments : YAC MJA ZL AH .
Analyzed the data : YAC MJA PCS .
Contributed reagents/materials/analysis tools : MJA PYTL ZL MSK PH. Wrote the paper : YAC MJA PCS PH.